

Types of optimizations

Classification of optimization (based on their scope)
@ Local (within basic blocks)
o Global Intra-procedural
o Global Inter-procedural

Classification based on their positioning:
o High level optimizations (use the program structure to optimize).
o Low level optimizations (work on medium/lower level IR)

Global Optimizations 2/33

Optimization classification (contd)

Classification with respect to their dependence on the target machine.

Machine dependent
o capitalize on machine-specific

Machine independent
o applicable across broad range

of machines properties
o Examples @ improve mapping from IR onto
machine

o move evaluation to a less
frequently executed place

o remove redundant
(unreachable, useless)
code.

o create opportunities.

©

strength reduction.

o replace sequence of
instructions with more
powerful one
(use “exotic” instructions)

Global Optimizations 3/33

Optimization

Desirable properties of an optimizing compiler
o code at least as good as an assembler programmer
stable, robust performance (predictability)
architectural strengths fully exploited
architectural weaknesses fully hidden

broad, efficient support for language features

© 06 06 0 o

instantaneous compilation

Global Optimizations 4/33

From local to global optimization

o Recall the local basic-block optimizations

o Constant propagation
o Dead code elimination

x =3 x =3

= * —-—> = Z * W —-—> y=2»>w
yozw Y g=3+y
q=x+y q=3+y

Global Optimizations 5/33

From local to global optimization

Can these optimizations be directly extended to an entire control-flow

graph?

x=3
IfB>0

a=2%x

Global Optimizations

6/33

From local to global optimization

Can these optimizations be directly extended to an entire control-flow

graph? There are situations where it is incorrect to globally propagate
constants:

Global Optimizations 7/33

From local to global optimization: Constant
Propagation

Correctness Criterion

To replace a use of x by constant k, on every path to the use of x, the
last assignment to x is x = k.

o This correctness criterion is non-trivial to check.

o ‘Every path’ includes paths around loops and through branches of
conditionals.

o This requires a ‘global’ analysis, i.e. an analysis of the entire
control-flow graph.

Global Optimizations 8/33

Global Analysis

Global optimization tasks share several traits:
o The optimization depends on knowing some property X at a
particular point in program execution.
@ Proving X at any point requires knowledge of the entire function.

o Itis OK to be conservative. If the optimization requires X to be
true, then the analysis can output one of two things:

o X is definitely true
o Don’t know if X is true.

o Global dataflow analysis is a standard technique for performing
global optimizations.

Global Optimizations 9/33

Global Constant Propagation

o To perform global constant propagation at a program point, we
need to know whether a variable will always have a constant value
at the point.

@ We associate one of the following values with variable x at every
program point:

o _L: This program point is not reachable.
o c¢: x has a constant value ¢
o T:xis not aconstant

Global Optimizations 10/33

«—Xx=T

x=3
IfB>0

«——x=3

a=2%x

Defining Global Constant Propagation Analysis

@ We associate two functions in,out : Var — ZU{T, L} with each
basic block.

o Global Constant Propagation Analysis is a forward analysis: in of
a basic block is defined in terms of out of predecessors.

o For a basic block b, In;, is defined as follows:

T dp € Pred(b). out,(x) =T

c Vp € Pred(b). outy(x) = cVout,(x) = L
T 3p1,p2 € Pred(b). out,, (x) # outy,,(x)
1 Vp € Pred(b). out,(x) = L

inp(x) =

The above definition is also called a meet operation.
We use the following notation for the above definition:

inp = \/pEPred(b) outp

Global Optimizations 12/33

Defining Global Constant Propagation Analysis

outy, is defined in terms of in, and the statements in basic block b
For simplicity, assume that we have a separate basic block for each
statement:

1 inp(x) =L

outy(x) = ¢ b: x = cwhereceZ
T b: x = e where e is an expression
Inp(x) b:y = ..

The above definition is also called a transfer function.
We can express the definition as a function f, such that f;,(iny) = outy.

Global Optimizations 13/33

Defining Global Constant Propagation Analysis

1 inp(x) = L

outy(x) = c b: x = cwhereceZ
elInp) b: x = e where e is an expression
Inp(x) b:y =

We can also do constant folding while evaluating expressions.

Given a function f : Var — ZU{T, L}, ¢[f] denotes the evaluation of

expression e using function f.
While evaluating, T +c¢ = T (similar for other arithmetic operators).

Global Optimizations 14/33

lterative method for computing In, Out

N : Set of nodes of CFG;

Start : Entry basic blocks of CFG (i.e. successors of entry);

foreach n € Start do
‘ in, < Av.T;
end
foreach n € N — Start do
in, < Av.L;
out, + Av.L;

end
repeat
foreach n € Nodes do
in, < ing;
out), < outy;
iy < vaPred(n) outp;
outy + fn(ing) ;
end
until Vn, in}, = in, Aout,, = outy, ;

Global Optimizations

15/33

Why do we need 1.?

o To compute in;,, we

b x=3 need outy,, but for that
IfB>0

we need outy,!

o We will encounter
similar problems
whenever we have
loops.

o Hence, we initialize in
and our values with L,
which intuitively means
that ‘so far as we know,
control never reaches
this point’

Global Optimizations 16/33

Orderings

o We can simplify the presentation of the data-flow analysis by
ordering the values.

oVeeZT<c<_L
o Formally, < is a partial order on the set ZU{ L, T}.

o We can define the greatest lower bound of a set of values.
o Formally, (ZU{L,T},<) forms a meet semi-lattice, and hence the
glb always exists for any set of values.

T dp € Pred(b). out,(x) =T

T 3p1,p2 € Pred(b). out,, (x) # outy,,(x)

1 Vp € Pred(b). out,(x) = L

c Vp € Pred(b). out,(x) = ¢V out,(x) = L

inp(x) =

o Notice that iny(x) = glb({out,(x) | p € Pred(b)}).
o The greatest lower bound is also called meet.

Global Optimizations 17/33

Orderings

o Every data-flow analysis can be represented by defining its meet
semi-lattice, with the corresponding meet operation being used in
the iterative method.

o Useful for proving the soundness of the analysis, for comparing
precision of different analyses, and for proving termination of the
iterative method.

o Dataflow analysis/Abstract Interpretation covered in detail in
advanced courses: CS5030, CS6013.

o Termination argument: We start with the highest value (L) and we
only move down.

o 1 can change to a constant value, which can change to T.

o Thus, each in(x) or out(x) can change at most twice at any basic
block.

o Maximum number of iterations = 2 * 2 * Number of variables *
Number of basic blocks.

Global Optimizations 18/33

Liveness Analysis... revisited

o We can represent liveness analysis in the dataflow analysis
framework.
o Let Var be the set of variables. Then, the meet semi-lattice would
be (P(Var),D).
o The glb operation is set union.
o The analysis works in the backward direction. Hence,
out, = Uses,m(b) ing.
@ The transfer function is f;,(S) = use, U (S — defy).
o usep are variables which are used before they are (possibly) defined

in b. Can be determined using the next-use algorithm.
o def;, are variables which are defined in b.

Global Optimizations 19/33

Types of program analysis

Classification of analysis (based on their view)

if (cond) {
a =
b =
} else {
a =
c =
}
// Which of the variables may be assigned? -- {a,b,c}
// Which of the variables must be assigned? -- {a}

o May analysis — the analysis holds on at least one data flow path.
@ Must analysis — the analysis must hold on all data flow paths.

o What can we say about constant propagation analysis? May or
Must?
o What can we say about liveness analysis? May or Must?

Global Optimizations 20/33

Classification of analysis (contd)

Classification of analysis (based on precision)
o Flow sensitive / insensitive.
o Insensitive - the analysis should hold at every program point; does
not depend on the control flow.
o Sensitive - Each program point has its own analysis.

if (c) |

a 2;

b = a;

c = 3;

print (a, b, c¢); // constants?
} else {

a =3

b a;

c = 3;

print (a, b, c¢); // constants?

Global Optimizations 21/33

Classification of analysis (contd)

o Context sensitive and insensitive

a = foo(2);
b = foo (3);
c = bar (2);
d = bar(2);

print (a, b, ¢, d); // a, b, ¢, d constants?

int foo(int x) { return x }
int bar(int x) { return x * x }

Global Optimizations 22/33

Alias Analysis

Alias analysis: problem of identifying storage locations that can be
accessed by more than one way.

Are variable a and b aliases? = a and b refer to the same location?
Modifying the contents of a, modifies the contents of b.

Necessary for performing many optimizations such as constant/copy
propagation, common sub-expression elimination, dead code
elimination, etc.

p
foo () {
int *p; \
int n;
p = &n;
n = 4; \
print ("%d", *p);

} 4

Global Optimizations 23/33

Alias analysis (contd)

extern int =xqgj;

foo() |
int a = 0, k;
k = a + 5;
f (a, &k);
*q = 13;
k = a + 5; /+ Assignment is redundant? =/

/* Expression is redundant? =*/

}

What happens if g == k?

Global Optimizations

24/33

Loop unrolling

(Example) Matrix-matrix multiply

do i« 1, n, 1
do j < 1, n, 1
c(i,j) «< O
do k <~ 1, n, 1
c(i,J) <« c(i,3) + a(i,k) = b(k,7)

o All the array elements are floating point values.
o 2n° flops, n? loop increments and branches
o each iteration does 3 loads and 2 flops

Global Optimizations 25/33

Example: loop unrolling

Matrix-matrix multiply (assume 4-word cache line)

do i« 1, n, 1
do j < 1, n, 1
c(i,j) «< O

do k <~ 1, n, 4
c(i,j) « c(i,3) + a(i, k) = b(k,7)
c(i,j) « c(i,3) + a(i,k+1l) * b(k+1l,73)
c(i,j) « c(i,73) + a(i,k+2) * b(k+2,7)
c(i,j) « c(i,73) + a(i,k+3) * b(k+3,7)

o 2n flops, § loop increments and branches
o each iteration does 9 loads and 8 flops
@ memory traffic is better

o c(i, j) isreused (putitin a register)
o a(i,k+...) reference are from cache
o b(k, j) is problematic

Global Optimizations 26/33

Example: loop unrolling

Matrix-matrix multiply (to improve traffic on b)

do j < 1, n, 1
do i« 1, n, 4
c(i,j) < O
do k <~ 1, n, 4
c(i,j) « c(i,3) + a(i,k) * b(k,])
+ a(i,k+1l) = b(k+1l,3) + a(i,k+2) *« b(k+2,73)
+ a(i,k+3) * b(k+3,73)
c(i+l,3) <+ c(i+l,73) + a(i+l,k) * b(k,3)
+ a(i+l,k+1) * b(k+1,7)
+ a(i+l,k+2) * b(k+2,73)
+ a(i+l,k+3) * b (k+3,73)
c(i+2,3) <+ c(i+2,3) + a(i+2,k) * b(k,)
+ a(i+2,k+1) * b(k+1,73)
+ a(i+2,k+2) * b(k+2,7)
+ a(i+2,k+3) » b(k+3,7J)
c(i+3,3) + c(i+3,3) + a(i+3,k) = b(k,)
+ a(i+3,k+1) * b(k+1,73)
+ a(i+3,k+2) * b(k+2,7)
+ a(i+3,k+3) * b(k+3,73)

Global Optimizations 27/33

Example: loop unrolling

What happened?
o interchanged i and 5 loops
o unrolled i loop
o fused inner loops
2n flops, 1
first assignment does 9 loads and 8 flops
2" through 4™ do 5 loads and 8 flops

memory traffic is better
o c(i+...,J) is shared across 4 iterations w.r.t the original program
o a(i+...,k+...) references are from cache
o b(k+...,7J) isreused (register)

Ioop increments and branches

© © 0 o

Global Optimizations 28/33

Loop optimizations: factoring loop-invariants

Loop invariants: expressions constant within loop body

Goal: move the loop invariant computation to outside the loop.

The loop independent code executes only once, instead of many times
the loop might.

Global Optimizations 29/33

Example: loop invariants

foreach i=1 .. 100 do
foreach j=1 .. 100 do
foreach k=1 .. 100 do
| Ali,9,k] =4 % F * k;
end
end
end

o 3 million index operations
o 2 million multiplications

Global Optimizations 30/33

Example: loop invariants (cont.)

Factoring the inner loop:

foreach i=1 .. 100 do
foreach j—l .. 100 do
tl = &A[i][J];
t2 = i * J
foreach k=1 .. 100 do
| tllk] = t2 * k;
end
end
end

And the second loop:

foreach i=1 .. 100
t3 = &A[i];

tl =

t2 = 1 % jJ
| t1l[k] =
end

end

end

Global Optimizations

foreach k=1 ..

do

00 do

foreach =1 .. 1
&t3[31;

100 do
t2 * k;

31/33

Optimization - overview

Compilers are engineered objects

@ minimize running time of compiled code
@ minimize compile time

o use reasonable compile-time space

o find a reasonable trade-off

Thus, results are sometimes unexpected

Global Optimizations

32/33

Back to first lecture

character stream

Lexical Analyzer

token stream

Syntax Analyzer

syntax tree

Semantic Analyzer

syntax tree

{

Intermediate Code Generator

T
intermediate representation

Machine-Independent
Code Optimizer

intermediate representation

Code Generator

T
target-machine code

|

Machine-Dependent
Code Optimizer

|

T
target-machine code

Global Optimizations

Front end responsibilities:

o Recognize syntactically legal
code; report errors.

o Recognize semantically legal
code; report errors.

o Produce IR.
Back end responsibilities:

o Optimizations, code
generation.

Our target
o five out of seven phases.
o glance over optimizations.

33/33

