
Global Optimizations

Types of optimizations

Classification of optimization (based on their scope)
Local (within basic blocks)
Global Intra-procedural
Global Inter-procedural

Classification based on their positioning:
High level optimizations (use the program structure to optimize).
Low level optimizations (work on medium/lower level IR)

Global Optimizations 2 / 33

Optimization classification (contd)

Classification with respect to their dependence on the target machine.

Machine independent
applicable across broad range
of machines
Examples

move evaluation to a less
frequently executed place
remove redundant
(unreachable, useless)
code.

create opportunities.

Machine dependent
capitalize on machine-specific
properties
improve mapping from IR onto
machine
strength reduction.
replace sequence of
instructions with more
powerful one
(use “exotic” instructions)

Global Optimizations 3 / 33

Optimization

Desirable properties of an optimizing compiler
code at least as good as an assembler programmer
stable, robust performance (predictability)
architectural strengths fully exploited
architectural weaknesses fully hidden
broad, efficient support for language features
instantaneous compilation

Global Optimizations 4 / 33

From local to global optimization

Recall the local basic-block optimizations
Constant propagation
Dead code elimination

x = 3
y = z * w -->
q = x + y

x = 3
y = z * w -->
q = 3 + y

y = z * w
q = 3 + y

Global Optimizations 5 / 33

From local to global optimization

Can these optimizations be directly extended to an entire control-flow
graph?

a = 2 * x

y = z + w y = 0

x = 3
If B > 0

Global Optimizations 6 / 33

From local to global optimization

Can these optimizations be directly extended to an entire control-flow
graph? There are situations where it is incorrect to globally propagate
constants:

a = 2 * x

y = z + w
x = 4

y = 0

x = 3
If B > 0

Global Optimizations 7 / 33

From local to global optimization: Constant
Propagation

Correctness Criterion
To replace a use of x by constant k, on every path to the use of x, the
last assignment to x is x = k.

This correctness criterion is non-trivial to check.
‘Every path’ includes paths around loops and through branches of
conditionals.
This requires a ‘global’ analysis, i.e. an analysis of the entire
control-flow graph.

Global Optimizations 8 / 33

Global Analysis

Global optimization tasks share several traits:
The optimization depends on knowing some property X at a
particular point in program execution.
Proving X at any point requires knowledge of the entire function.
It is OK to be conservative. If the optimization requires X to be
true, then the analysis can output one of two things:

X is definitely true
Don’t know if X is true.

Global dataflow analysis is a standard technique for performing
global optimizations.

Global Optimizations 9 / 33

Global Constant Propagation

To perform global constant propagation at a program point, we
need to know whether a variable will always have a constant value
at the point.
We associate one of the following values with variable x at every
program point:

⊥: This program point is not reachable.
c: x has a constant value c
⊤: x is not a constant

Global Optimizations 10 / 33

Example

a = 2 * x

y = z + w
x = 4

y = 0

x = 3
If B > 0

x = T

x = 3

x = 3

x = 3

x = 4
x = 3

x = T

Global Optimizations 11 / 33

Defining Global Constant Propagation Analysis

We associate two functions in,out : Var→ Z∪{⊤,⊥} with each
basic block.
Global Constant Propagation Analysis is a forward analysis: in of
a basic block is defined in terms of out of predecessors.
For a basic block b, Inb is defined as follows:

inb(x) =

⊤ ∃p ∈ Pred(b). outp(x) =⊤
c ∀p ∈ Pred(b). outp(x) = c∨outp(x) =⊥
⊤ ∃p1,p2 ∈ Pred(b). outp1(x) ̸= outp2(x)
⊥ ∀p ∈ Pred(b). outp(x) =⊥

The above definition is also called a meet operation.
We use the following notation for the above definition:
inb =

∨
p∈Pred(b) outp

Global Optimizations 12 / 33

Defining Global Constant Propagation Analysis

outb is defined in terms of inb and the statements in basic block b
For simplicity, assume that we have a separate basic block for each
statement:

outb(x) =

⊥ inb(x) =⊥
c b : x = c where c ∈ Z
⊤ b : x = e where e is an expression
Inb(x) b : y = . . .

The above definition is also called a transfer function.
We can express the definition as a function fb such that fb(inb) = outb.

Global Optimizations 13 / 33

Defining Global Constant Propagation Analysis

outb(x) =

⊥ inb(x) =⊥
c b : x = c where c ∈ Z
e[Inb] b : x = e where e is an expression
Inb(x) b : y = . . .

We can also do constant folding while evaluating expressions.

Given a function f : Var→ Z∪{⊤,⊥}, e[f] denotes the evaluation of
expression e using function f .
While evaluating, ⊤+ c =⊤ (similar for other arithmetic operators).

Global Optimizations 14 / 33

Iterative method for computing In,Out

N : Set of nodes of CFG;
Start : Entry basic blocks of CFG (i.e. successors of entry);
foreach n ∈ Start do

inn← λv.⊤;
end
foreach n ∈ N−Start do

inn← λv.⊥;
outn← λv.⊥;

end
repeat

foreach n ∈ Nodes do
in′n← inn;
out′n← outn;
inn←

∨
p∈Pred(n) outp;

outn← fn(inn) ;
end

until ∀n, in′n = inn∧out′n = outn ;

Global Optimizations 15 / 33

Why do we need ⊥?

a = 2 * x

y = z + w y = 0

x = 3
If B > 0

x=3

x=???

𝑏!

𝑏"
𝑏#

𝑏$

To compute inb3 , we
need outb4 , but for that
we need outb3 !
We will encounter
similar problems
whenever we have
loops.
Hence, we initialize in
and out values with ⊥,
which intuitively means
that ‘so far as we know,
control never reaches
this point’

Global Optimizations 16 / 33

Orderings

We can simplify the presentation of the data-flow analysis by
ordering the values.

∀c ∈ Z.⊤≤ c≤⊥
Formally, ≤ is a partial order on the set Z∪{⊥,⊤}.

We can define the greatest lower bound of a set of values.
Formally, (Z∪{⊥,⊤},≤) forms a meet semi-lattice, and hence the
glb always exists for any set of values.

inb(x) =

⊤ ∃p ∈ Pred(b). outp(x) =⊤
⊤ ∃p1,p2 ∈ Pred(b). outp1(x) ̸= outp2(x)
⊥ ∀p ∈ Pred(b). outp(x) =⊥
c ∀p ∈ Pred(b). outp(x) = c∨outp(x) =⊥

Notice that inb(x) = glb({outp(x) | p ∈ Pred(b)}).
The greatest lower bound is also called meet.

Global Optimizations 17 / 33

Orderings

Every data-flow analysis can be represented by defining its meet
semi-lattice, with the corresponding meet operation being used in
the iterative method.

Useful for proving the soundness of the analysis, for comparing
precision of different analyses, and for proving termination of the
iterative method.
Dataflow analysis/Abstract Interpretation covered in detail in
advanced courses: CS5030, CS6013.

Termination argument: We start with the highest value (⊥) and we
only move down.

⊥ can change to a constant value, which can change to ⊤.
Thus, each in(x) or out(x) can change at most twice at any basic
block.
Maximum number of iterations = 2 * 2 * Number of variables *
Number of basic blocks.

Global Optimizations 18 / 33

Liveness Analysis... revisited

We can represent liveness analysis in the dataflow analysis
framework.
Let Var be the set of variables. Then, the meet semi-lattice would
be (P(Var),⊇).

The glb operation is set union.
The analysis works in the backward direction. Hence,
outb =

⋃
s∈succ(b) ins.

The transfer function is fb(S) = useb∪ (S−defb).
useb are variables which are used before they are (possibly) defined
in b. Can be determined using the next-use algorithm.
defb are variables which are defined in b.

Global Optimizations 19 / 33

Types of program analysis

Classification of analysis (based on their view)

if (cond) {
a = ...
b = ...

} else {
a = ...
c = ...

}
// Which of the variables may be assigned? -- {a,b,c}
// Which of the variables must be assigned? -- {a}

May analysis – the analysis holds on at least one data flow path.
Must analysis – the analysis must hold on all data flow paths.

What can we say about constant propagation analysis? May or
Must?
What can we say about liveness analysis? May or Must?

Global Optimizations 20 / 33

Classification of analysis (contd)

Classification of analysis (based on precision)
Flow sensitive / insensitive.

Insensitive - the analysis should hold at every program point; does
not depend on the control flow.
Sensitive - Each program point has its own analysis.

if (c) {
a = 2;
b = a;
c = 3;
print (a, b, c); // constants?

} else {
a = 3
b = a;
c = 3;
print (a, b, c); // constants?

}

Global Optimizations 21 / 33

Classification of analysis (contd)

Context sensitive and insensitive
a = foo(2);

b = foo (3);

c = bar (2);

d = bar(2);

print (a, b, c, d); // a, b, c, d constants?

int foo(int x) { return x }
int bar(int x) { return x * x }

Global Optimizations 22 / 33

Alias Analysis

Alias analysis: problem of identifying storage locations that can be
accessed by more than one way.

Are variable a and b aliases? ⇒ a and b refer to the same location?
Modifying the contents of a, modifies the contents of b.

Necessary for performing many optimizations such as constant/copy
propagation, common sub-expression elimination, dead code
elimination, etc.

foo(){
int *p;
int n;
p = &n;
n = 4;
print ("%d", *p);

}

p

n

4

Global Optimizations 23 / 33

Alias analysis (contd)

extern int *q;
foo() {
int a = 0, k;
k = a + 5;
f (a, &k);

*q = 13;
k = a + 5; /* Assignment is redundant? */

/* Expression is redundant? */
...

}

What happens if q == k?

Global Optimizations 24 / 33

Loop unrolling

(Example) Matrix-matrix multiply

do i ← 1, n, 1
do j ← 1, n, 1

c(i,j) ← 0
do k ← 1, n, 1

c(i,j) ← c(i,j) + a(i,k) * b(k,j)

All the array elements are floating point values.
2n3 flops, n3 loop increments and branches
each iteration does 3 loads and 2 flops

Global Optimizations 25 / 33

Example: loop unrolling
Matrix-matrix multiply (assume 4-word cache line)

do i ← 1, n, 1
do j ← 1, n, 1

c(i,j) ← 0
do k ← 1, n, 4

c(i,j) ← c(i,j) + a(i,k) * b(k,j)
c(i,j) ← c(i,j) + a(i,k+1) * b(k+1,j)
c(i,j) ← c(i,j) + a(i,k+2) * b(k+2,j)
c(i,j) ← c(i,j) + a(i,k+3) * b(k+3,j)

2n3 flops, n3

4 loop increments and branches
each iteration does 9 loads and 8 flops
memory traffic is better

c(i,j) is reused (put it in a register)
a(i,k+...) reference are from cache
b(k,j) is problematic

Global Optimizations 26 / 33

Example: loop unrolling
Matrix-matrix multiply (to improve traffic on b)

do j ← 1, n, 1
do i ← 1, n, 4

c(i,j) ← 0
do k ← 1, n, 4

c(i,j) ← c(i,j) + a(i,k) * b(k,j)
+ a(i,k+1) * b(k+1,j) + a(i,k+2) * b(k+2,j)
+ a(i,k+3) * b(k+3,j)

c(i+1,j) ← c(i+1,j) + a(i+1,k) * b(k,j)
+ a(i+1,k+1) * b(k+1,j)
+ a(i+1,k+2) * b(k+2,j)
+ a(i+1,k+3) * b(k+3,j)

c(i+2,j) ← c(i+2,j) + a(i+2,k) * b(k,j)
+ a(i+2,k+1) * b(k+1,j)
+ a(i+2,k+2) * b(k+2,j)
+ a(i+2,k+3) * b(k+3,j)

c(i+3,j) ← c(i+3,j) + a(i+3,k) * b(k,j)
+ a(i+3,k+1) * b(k+1,j)
+ a(i+3,k+2) * b(k+2,j)
+ a(i+3,k+3) * b(k+3,j)

Global Optimizations 27 / 33

Example: loop unrolling

What happened?
interchanged i and j loops
unrolled i loop
fused inner loops

2n3 flops, n3

16 loop increments and branches
first assignment does 9 loads and 8 flops
2nd through 4th do 5 loads and 8 flops

memory traffic is better
c(i+...,j) is shared across 4 iterations w.r.t the original program
a(i+...,k+...) references are from cache
b(k+...,j) is reused (register)

Global Optimizations 28 / 33

Loop optimizations: factoring loop-invariants

Loop invariants: expressions constant within loop body

Goal: move the loop invariant computation to outside the loop.

The loop independent code executes only once, instead of many times
the loop might.

Global Optimizations 29 / 33

Example: loop invariants

foreach i=1 .. 100 do
foreach j=1 .. 100 do

foreach k=1 .. 100 do
A[i,j,k] = i * j * k;

end
end

end

3 million index operations
2 million multiplications

Global Optimizations 30 / 33

Example: loop invariants (cont.)

Factoring the inner loop:
foreach i=1 .. 100 do

foreach j=1 .. 100 do
t1 = &A[i][j];
t2 = i * j ;
foreach k=1 .. 100 do

t1[k] = t2 * k;
end

end
end

And the second loop:
foreach i=1 .. 100 do

t3 = &A[i];
foreach j=1 .. 100 do

t1 = &t3[j];
t2 = i * j ;
foreach k=1 .. 100 do

t1[k] = t2 * k;
end

end
end

Global Optimizations 31 / 33

Optimization - overview

Compilers are engineered objects
minimize running time of compiled code
minimize compile time
use reasonable compile-time space
find a reasonable trade-off

Thus, results are sometimes unexpected

Global Optimizations 32 / 33

Back to first lecture

Front end responsibilities:
Recognize syntactically legal
code; report errors.
Recognize semantically legal
code; report errors.
Produce IR.

Back end responsibilities:
Optimizations, code
generation.

Our target
five out of seven phases.
glance over optimizations.

Global Optimizations 33 / 33

