Basic Block Optimizations

The Compiler

Overview of Optimizations

- Optimizations are program transformations that seek to improve a program's resource utilization
- Execution time (most often)
- Space
- Code size
- Network messages sent, etc.
- Optimizations should not alter what the program computes.
- The observable behaviour of the program must stay the same.

Classification of Optimizations

For imperative languages like C, C++, Java, etc. there are three granularities of optimizations
(1) Local optimizations

- Apply to a basic block in isolation
(2) Global optimizations
- Apply to a control-flow graph (of a method) in isolation
(3) Inter-procedural optimizations
- Apply across method boundaries.

Most compilers do (1), many do (2), few do (3).

Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimization known.
- Why?
- Some optimizations are hard to implement.
- Some optimizations are costly in compilation time.
- Some optimizations have low benefit.
- Many fancy optimizations are all three!
- Goal: Maximum benefit for minimum cost
- The term 'program optimization' is a slight misnomer: we don't necessarily get the 'optimal' code.
- Program improvement is a more appropriate term.

Local Optimizations

- The simplest form of optimizations.
- No need to analyze the entire procedure code, just look at a basic block.
- It is a linear piece of code.
- Analyzing and optimizing is easier.
- Has local scope - and hence effect is limited.
- Inspite of being simple, it can often provide substantial benefits.

DAG representation of basic blocks

Recall: DAG representation of expressions

- leaves corresponding to atomic operands, and interior nodes corresponding to operators.
- A node N has multiple parents $-N$ is a common subexpression.
- Example: $(a+a *(b-c))+((b-c) * d)$

DAG construction for a basic block

- There is a node in the DAG for each of the initial values of the variables appearing in the basic block.
- There is a node N associated with each statement s within the block. The children of N are those nodes corresponding to statements that are the last definitions, prior to s, of the operands used by s.
- Node N is labeled by the operator applied at s, and also attached to N is the list of variables for which it is the last definition within the block.
- Certain nodes are designated output nodes. These are the nodes whose variables are live on exit from the block.

Optimizations on the DAG

- Common sub-expression elimination.
- Eliminate dead code.
- Copy propagation
- Algebraic optimizations.

Finding common sub-expressions

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} \\
& \mathrm{~b}=\mathrm{a}-\mathrm{d} \\
& \mathrm{c}=\mathrm{b}+\mathrm{c} \\
& \mathrm{~d}=\mathrm{a}-\mathrm{d}
\end{aligned}
$$

Example (contd)

$$
\begin{aligned}
& a=b+c \\
& d=a-d \\
& c=d+c \\
& / / \text { if } b \text { is live } \\
& b=d
\end{aligned}
$$

Limitations of the DAG based CSE

$$
\begin{aligned}
& a=b+c \\
& b=b-d \\
& c=c+d \\
& e=b+c
\end{aligned}
$$

- The two occurrences of the sub-expressions b + c compute the same value.
- Value computed by a and e are the same.
- How to handle the algebraic identities?

Dead code elimination

- Delete any root from DAG that has no ancestors and is not live out (has no live out variable associated).
- Repeat previous step till no change.
- Assume a and b are live out.

- Remove first e and then c.
- a and b remain.

CSE via Algebraic identities

- Recall: In common sub-expression elimination, we want to reuse nodes that compute the same value.
- Recall: We mainly focussed on syntactic similarities.
- Can we go beyond that?

Similarities in the semantics - identity, inverse, zero

$$
\begin{aligned}
& x+0=0+x=x \\
& x * 1=1 * x=x \\
& a \& \& \text { true }=\text { true } \& \& a=a \\
& a|\mid \text { false }=\text { false }| \mid a=a \\
& x * 0=0 \star x=0 \\
& 0 / x=0
\end{aligned}
$$

Goal: apply arithmetic identities to eliminate computation.

Similarities in the semantics - strength reduction

$$
\begin{aligned}
& x^{\wedge} 2=x \star x \\
& 2 \star x=x+x=x \ll 1 \\
& x / 2=x * 0.5=x \gg 1
\end{aligned}
$$

Constant folding:

$$
\begin{aligned}
& a=5 * 2 \\
& -> \\
& a=10
\end{aligned}
$$

Goal: identify equivalence modulo strength reduction operations.

Algebraic properties

- Commutative: Say the operator * is commutative. $x^{*} y=y^{*} x$
- Associative: $a+(b-c)=(a+b)-c$

$$
\begin{aligned}
& a=b+c \\
& e=c+d+b \\
& -> \\
& a=b+c \\
& t=c+d \\
& a=t+b \\
& ->(a s s u m i n g ~ t ~ i s ~ n o t ~ u s e d ~ a n y w h e r e ~ e l s e) ~ \\
& a=b+c \\
& e=a+d \\
& \mathrm{e}=\mathrm{b}=\mathrm{b}-1 ; \mathrm{c}=\mathrm{a}+1 \rightarrow \mathrm{c}=\mathrm{b}
\end{aligned}
$$

Copy Propagation

if $w=x$ appears in a basic block, replace subsequent uses of w with x, until the next definition of w.
b $=\mathrm{z}+\mathrm{y}$
$\mathrm{a}=\mathrm{b}$
$x=2$ * a
$->$
b $=\mathrm{z}+\mathrm{y}$
$\mathrm{a}=\mathrm{b}$
$\mathrm{x}=2$ * b
Only useful for enabling other optimizations

- Constant folding
- Dead code elimination
- Common sub-expression elimination

Copy Propagation and Constant Folding

$$
\begin{aligned}
& a=5 \\
& x=2 * a \\
& y=x+6 \\
& t=x * y \\
& -> \\
& a=5 \\
& x=10 \\
& y=16 \\
& t=160
\end{aligned}
$$

Applying Local Optimizations

- Each local optimization does little by itself.
- Typically optimizations interact with each other.
- Performing one optimization enables another.
- Optimizing compilers repeat optimizations until no improvement is possible.

An Example

$$
\begin{aligned}
& \text { Initial Code: } \\
& \mathrm{a}=\mathrm{x} \wedge 2 \\
& \mathrm{~b}=3 \\
& \mathrm{c}=\mathrm{x} \\
& \mathrm{~d}=\mathrm{c} * \mathrm{c} \\
& \mathrm{e}=\mathrm{b} * 2 \\
& \mathrm{f}=\mathrm{a}+\mathrm{d} \\
& \mathrm{~g}=\mathrm{e} * \mathrm{f}
\end{aligned}
$$

An Example

Algebraic Properties (Strength Reduction):

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x}^{\wedge} 2 \\
& \mathrm{~b}=3 \\
& \mathrm{c}=\mathrm{x} \\
& \mathrm{~d}=\mathrm{c} * \mathrm{c} \\
& \mathrm{e}=\mathrm{b} * 2 \\
& \mathrm{f}=\mathrm{a}+\mathrm{d} \\
& \mathrm{~g}=\mathrm{e} * \mathrm{f}
\end{aligned}
$$

An Example

Algebraic Properties (Strength Reduction):

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x} \star \mathrm{x} \\
& \mathrm{~b}=3 \\
& \mathrm{c}=\mathrm{x} \\
& \mathrm{~d}=\mathrm{c} * \mathrm{c} \\
& \mathrm{e}=\mathrm{b} \ll 1 \\
& \mathrm{f}=\mathrm{a}+\mathrm{d} \\
& \mathrm{~g}=\mathrm{e} * \mathrm{f}
\end{aligned}
$$

An Example

$$
\begin{aligned}
& \text { Copy Propagation: } \\
& \mathrm{a}=\mathrm{x} * \mathrm{x} \\
& \mathrm{~b}=3 \\
& \mathrm{c}=\mathrm{x} \\
& \mathrm{~d}=\mathrm{c} * \mathrm{c} \\
& \mathrm{e}=\mathrm{b} \ll \mathrm{l} \\
& \mathrm{f}=\mathrm{a}+\mathrm{d} \\
& \mathrm{~g}=\mathrm{e} * \mathrm{f}
\end{aligned}
$$

An Example

Copy Propagation + Constant Folding:
$a=x$ * x
$\mathrm{b}=3$
$\mathrm{C}=\mathrm{x}$
$d=x * x$
$e=6$
$\mathrm{f}=\mathrm{a}+\mathrm{d}$
$g=e \star f$

An Example

Common Sub-expression Elimination:
$\mathrm{a}=\mathrm{X} \star \mathrm{X}$
$\mathrm{b}=3$
c $=x$
$d=x * x$
$e=6$
$\mathrm{f}=\mathrm{a}+\mathrm{d}$
$g=e * f$

An Example

Common Sub-expression Elimination:
$\mathrm{a}=\mathrm{X} \star \mathrm{X}$
$\mathrm{b}=3$
c $=x$
d $=\mathrm{a}$
$e=6$
$\mathrm{f}=\mathrm{a}+\mathrm{d}$
$g=e * f$

An Example

Copy Propagation (again):
$a=x$ * x
$\mathrm{b}=3$
$\mathrm{C}=\mathrm{x}$
$\mathrm{d}=\mathrm{a}$
$e=6$
$\mathrm{f}=\mathrm{a}+\mathrm{d}$
$g=e \star f$

An Example

Copy Propagation (again):
$a=x$ * x
$\mathrm{b}=3$
$\mathrm{C}=\mathrm{x}$
$\mathrm{d}=\mathrm{a}$
$e=6$
$\mathrm{f}=\mathrm{a}+\mathrm{a}$
$g=6 \star \mathrm{f}$

An Example

Dead Code Elimination:

$\mathrm{a}=\mathrm{X} \star \mathrm{X}$
$b=3$
$C=x$
$d=a$
$e=6$
$f=a+a$
$g=6 \star \mathrm{f}$

An Example

Final Code:
$a=X * X$
$f=a+a$
$g=6 \star \mathrm{f}$

Representing Array accesses in the DAG

- To represent assignment from an array, we will create a node with operator = [] with two children representing the array name and index.

$$
\begin{aligned}
& x=a[i] \\
& a[j]=y \\
& z=a[i]
\end{aligned}
$$

Q: Is a[i] a common sub-expression?

- An assignment to an array kills all previous nodes associated with the array.
- A killed node cannot receive any more labels; it cannot become a common sub-expression.

Representing Array accesses in the DAG

$$
\begin{aligned}
& x=a[i] \\
& a[j]=y \\
& z=a[i]
\end{aligned}
$$

Array representation (2)

$$
\begin{aligned}
& \mathrm{b}=\mathrm{a}+12 \\
& \mathrm{x}=\mathrm{b}[\mathrm{i}] \\
& \mathrm{b}[\mathrm{j}]=\mathrm{y}
\end{aligned}
$$

Assume that elements of 'a' are 4 bytes size

Home reading: How to handle pointers.

Peephole optimization

- A local optimization technique.
- Simplistic in nature, but effective in practise.
- Idea:
- Keep a sliding window (called peephole)
- Replace instruction sequences within the peephole by an efficient (shorter / faster / ...) sequence.

Peephole optimization

- The "peephole" is typically small.
- The code in the peephole need not be contiguous.
- Each improvement may lead to additional improvements.
- In general, we may have to make multiple passes.

Eliminating redundant loads and stores

Load a, R0
Store R0, a

Delete the pair of instructions. Always?

What if there is a label on the store instruction?

We need to be sure that the Store instruction and Load are executed as a pair.

Why would we have such stupid code?

Eliminating unreachable code

- An unlabelled statement after an unconditional jump - can be removed.
goto L2
INCR RO
L2:

Flow-of-control optimizations

- Naive code generation creates many jumps.
- Jumps to jumps can be short circuited.
goto L1

L1: goto L2
Can be replaced with
goto L2
L1: goto L2
Further optimizations on L1 are possible.
Similar situation with conditional jumps

```
if (cond) goto L1
```

L1: goto L2

Algebraic simplification and strength reduction

- Eliminate identity operations.
- Replace x^{2} by $x * x$, and so on.
- Replace multiplication by a power of two (by left-shift) and division by a power of two (by right shift).

Peephole procedure

- First make a list of patterns that you want to replace with a list of target patterns.
- Identify the pattern in the code and do the replacement.
- Iterate till you are done.
- Can be efficiently done on an DAG.
- No guarantees about optimality.
- Most of the peephole optimizations guarantee improvement.

