
Basic Block Optimizations

The Compiler

Basic Block Optimizations 2 / 41

Overview of Optimizations

Optimizations are program transformations that seek to improve a
program’s resource utilization

Execution time (most often)
Space
Code size
Network messages sent, etc.

Optimizations should not alter what the program computes.
The observable behaviour of the program must stay the same.

Basic Block Optimizations 3 / 41

Classification of Optimizations

For imperative languages like C,C++,Java, etc. there are three
granularities of optimizations

1 Local optimizations
Apply to a basic block in isolation

2 Global optimizations
Apply to a control-flow graph (of a method) in isolation

3 Inter-procedural optimizations
Apply across method boundaries.

Most compilers do 1 , many do 2 , few do 3 .

Basic Block Optimizations 4 / 41

Cost of Optimizations

In practice, a conscious decision is made not to implement the
fanciest optimization known.
Why?

Some optimizations are hard to implement.
Some optimizations are costly in compilation time.
Some optimizations have low benefit.
Many fancy optimizations are all three!

Goal: Maximum benefit for minimum cost
The term ‘program optimization’ is a slight misnomer: we don’t
necessarily get the ‘optimal’ code.

Program improvement is a more appropriate term.

Basic Block Optimizations 5 / 41

Local Optimizations

The simplest form of optimizations.
No need to analyze the entire procedure code, just look at a basic
block.

It is a linear piece of code.
Analyzing and optimizing is easier.
Has local scope - and hence effect is limited.

Inspite of being simple, it can often provide substantial benefits.

Basic Block Optimizations 6 / 41

DAG representation of basic blocks

Recall: DAG representation of expressions
leaves corresponding to atomic operands, and interior nodes
corresponding to operators.
A node N has multiple parents - N is a common subexpression.
Example: (a + a * (b - c)) + ((b - c) * d)

Basic Block Optimizations 7 / 41

DAG construction for a basic block

There is a node in the DAG for each of the initial values of the
variables appearing in the basic block.

There is a node N associated with each statement s within the
block. The children of N are those nodes corresponding to
statements that are the last definitions, prior to s, of the operands
used by s.

Node N is labeled by the operator applied at s, and also attached
to N is the list of variables for which it is the last definition within
the block.

Certain nodes are designated output nodes. These are the nodes
whose variables are live on exit from the block.

Basic Block Optimizations 8 / 41

Optimizations on the DAG

Common sub-expression elimination.
Eliminate dead code.
Copy propagation
Algebraic optimizations.

Basic Block Optimizations 9 / 41

Finding common sub-expressions

a = b + c
b = a - d
c = b + c
d = a - d

Basic Block Optimizations 10 / 41

Example (contd)

a = b + c
d = a - d
c = d + c

// if b is live
b = d

Basic Block Optimizations 11 / 41

Limitations of the DAG based CSE

a = b + c
b = b - d
c = c + d
e = b + c

The two occurrences of the sub-expressions b + c compute the
same value.
Value computed by a and e are the same.
How to handle the algebraic identities?

Basic Block Optimizations 12 / 41

Dead code elimination

Delete any root from DAG that has no ancestors and is not live out
(has no live out variable associated).
Repeat previous step till no change.

Assume a and b are live out.
Remove first e and then c.
a and b remain.

Basic Block Optimizations 13 / 41

CSE via Algebraic identities

Recall: In common sub-expression elimination, we want to reuse
nodes that compute the same value.
Recall: We mainly focussed on syntactic similarities.
Can we go beyond that?

Basic Block Optimizations 14 / 41

Similarities in the semantics - identity, inverse, zero

x + 0 = 0 + x = x

x * 1 = 1 * x = x

a && true = true && a = a

a || false = false || a = a

x * 0 = 0 * x = 0

0 / x = 0

Goal: apply arithmetic identities to eliminate computation.

Basic Block Optimizations 15 / 41

Similarities in the semantics - strength reduction

xˆ2 = x * x

2 * x = x + x = x << 1

x/2 = x * 0.5 = x >> 1

Constant folding:

a = 5 * 2
->
a = 10

Goal: identify equivalence modulo strength reduction operations.

Basic Block Optimizations 16 / 41

Algebraic properties

Commutative: Say the operator * is commutative. x * y = y * x
Associative: a + (b - c) = (a + b) - c
a = b + c
e = c + d + b
->
a = b + c
t = c + d
a = t + b
-> (assuming t is not used anywhere else)
a = b + c
e = a + d

a = b - 1; c = a + 1 → c = b

Basic Block Optimizations 17 / 41

Copy Propagation

if w = x appears in a basic block, replace subsequent uses of w with
x, until the next definition of w.

b = z + y
a = b
x = 2 * a
->
b = z + y
a = b
x = 2 * b

Only useful for enabling other optimizations
Constant folding
Dead code elimination
Common sub-expression elimination

Basic Block Optimizations 18 / 41

Copy Propagation and Constant Folding

a = 5
x = 2 * a
y = x + 6
t = x * y
->
a = 5
x = 10
y = 16
t = 160

Basic Block Optimizations 19 / 41

Applying Local Optimizations

Each local optimization does little by itself.
Typically optimizations interact with each other.

Performing one optimization enables another.

Optimizing compilers repeat optimizations until no improvement is
possible.

Basic Block Optimizations 20 / 41

An Example

Initial Code:
a = x ˆ 2
b = 3
c = x
d = c * c
e = b * 2
f = a + d
g = e * f

Basic Block Optimizations 21 / 41

An Example

Algebraic Properties (Strength Reduction):
a = x ˆ 2
b = 3
c = x
d = c * c
e = b * 2
f = a + d
g = e * f

Basic Block Optimizations 22 / 41

An Example

Algebraic Properties (Strength Reduction):
a = x * x
b = 3
c = x
d = c * c
e = b << 1
f = a + d
g = e * f

Basic Block Optimizations 23 / 41

An Example

Copy Propagation:
a = x * x
b = 3
c = x
d = c * c
e = b << 1
f = a + d
g = e * f

Basic Block Optimizations 24 / 41

An Example

Copy Propagation + Constant Folding:
a = x * x
b = 3
c = x
d = x * x
e = 6
f = a + d
g = e * f

Basic Block Optimizations 25 / 41

An Example

Common Sub-expression Elimination:
a = x * x
b = 3
c = x
d = x * x
e = 6
f = a + d
g = e * f

Basic Block Optimizations 26 / 41

An Example

Common Sub-expression Elimination:
a = x * x
b = 3
c = x
d = a
e = 6
f = a + d
g = e * f

Basic Block Optimizations 27 / 41

An Example

Copy Propagation (again):
a = x * x
b = 3
c = x
d = a
e = 6
f = a + d
g = e * f

Basic Block Optimizations 28 / 41

An Example

Copy Propagation (again):
a = x * x
b = 3
c = x
d = a
e = 6
f = a + a
g = 6 * f

Basic Block Optimizations 29 / 41

An Example

Dead Code Elimination:
a = x * x
b = 3
c = x
d = a
e = 6
f = a + a
g = 6 * f

Basic Block Optimizations 30 / 41

An Example

Final Code:
a = x * x
f = a + a
g = 6 * f

Basic Block Optimizations 31 / 41

Representing Array accesses in the DAG

x = a[i]
a[j] = y
z = a[i]

Q: Is a[i] a common
sub-expression?

To represent assignment from an array, we
will create a node with operator = [] with two
children representing the array name and
index.
To represent assignment to an array, we will
create a node with operator [] = with 3
children, representing the array name, index
and RHS variable.
An assignment to an array kills all previous
nodes associated with the array.
A killed node cannot receive any more
labels; it cannot become a common
sub-expression.

Basic Block Optimizations 32 / 41

Representing Array accesses in the DAG

x = a[i]
a[j] = y
z = a[i]

Basic Block Optimizations 33 / 41

Array representation (2)

b = a + 12
x = b[i]
b[j] = y

Assume that elements of ’a’ are 4
bytes size

Home reading: How to handle pointers.

Basic Block Optimizations 34 / 41

Peephole optimization

A local optimization technique.
Simplistic in nature, but effective in practise.
Idea:

Keep a sliding window (called peephole)
Replace instruction sequences within the peephole by an efficient
(shorter / faster / . . .) sequence.

Basic Block Optimizations 35 / 41

Peephole optimization

The “peephole” is typically small.
The code in the peephole need not be contiguous.
Each improvement may lead to additional improvements.
In general, we may have to make multiple passes.

Basic Block Optimizations 36 / 41

Eliminating redundant loads and stores

Load a, R0
Store R0, a

Delete the pair of instructions. Always?

What if there is a label on the store instruction?

We need to be sure that the Store instruction and Load are executed
as a pair.

Why would we have such stupid code?

Basic Block Optimizations 37 / 41

Eliminating unreachable code

An unlabelled statement after an unconditional jump – can be
removed.
goto L2
INCR R0
L2:

Basic Block Optimizations 38 / 41

Flow-of-control optimizations

Naive code generation creates many jumps.
Jumps to jumps can be short circuited.
goto L1
...
L1: goto L2

Can be replaced with
goto L2
...
L1: goto L2

Further optimizations on L1 are possible.

Similar situation with conditional jumps
if (cond) goto L1
...
L1: goto L2

Basic Block Optimizations 39 / 41

Algebraic simplification and strength reduction

Eliminate identity operations.
Replace x2 by x∗ x, and so on.
Replace multiplication by a power of two (by left-shift) and division
by a power of two (by right shift).

Basic Block Optimizations 40 / 41

Peephole procedure

First make a list of patterns that you want to replace with a list of
target patterns.
Identify the pattern in the code and do the replacement.
Iterate till you are done.
Can be efficiently done on an DAG.
No guarantees about optimality.
Most of the peephole optimizations guarantee improvement.

Basic Block Optimizations 41 / 41

