
Basic Blocks and CFG



Basic blocks revisited

A graph representation of intermediate code.

Basic block properties
The flow of control can only enter the basic block through the first
instruction in the block.
No jumps into the middle of the block.
Control leaves the block without halting / branching (except may
be the last instruction of the block).

The basic blocks become the nodes of a flow graph, whose edges
indicate which blocks can follow which other blocks.

Basic Blocks and CFG 2 / 19



Example

Basic Blocks and CFG 3 / 19



Example - flow chart and control-flow

Basic Blocks and CFG 4 / 19



Deep dive - Basic block
Basic block definition

A basic block is a maximal sequence of instructions that can be entered
only at the first instruction.

The basic block can be exited only from the last instruction of the basic
block.

Implication:First instruction can be a) first instruction of a procedure, b)
target of a branch, c) instruction following a branch

First instruction is called the leader of the BB.

How to construct the basic block?

Identify all the leaders in the program.

For each leader: include in its basic block all the instructions from the
leader to the next leader (next leader not included) or the end of the
routine, in sequence.

What about function calls?

Considered as the last statement in a basic block. Hence, the statement
following the call would be a leader.

Basic Blocks and CFG 5 / 19



Example 2

for i=1 ... 10 do
for j=1 ... 10 do

a[i,j] = 0.0;

for i=1 ... 10 do
a[i,i] = 1.0;

Basic Blocks and CFG 6 / 19



Basic Block Code Generation

We want to keep variables in registers for as long as possible, to
avoid having to reload them whenever they are needed.
We don’t know which path through the flow-graph has taken us to
this basic block =⇒ We can’t assume that any variables are in
registers.
We don’t know where we will go from this block =⇒ Values kept
in registers must be stored back into their memory locations
before the block is exited.

Basic Blocks and CFG 7 / 19



Basic Block Code Generation

Basic Blocks and CFG 8 / 19



Next use information

We want to keep variables in registers for as long as possible, to
avoid having to reload them whenever they are needed.
When a variable isn’t needed any more we free the register to
reuse it for other variables. =⇒ We must know if a particular
value will be used later in the basic block.

Basic Blocks and CFG 9 / 19



Next use information

If, after computing a value X, we will soon be using the value
again, we should keep it in a register. If the value has no further
use in the block we can reuse the register

Basic Blocks and CFG 10 / 19



Next use information...

(5) x = ...
... (no ref to X) ...

(14) ... = ... x ...

X is live at (5) because the value computed at (5) is used later in
the basic block.
X’s “next use” at (5) is (14).
It is a good idea to keep X in a register between (5) and (14).

Basic Blocks and CFG 11 / 19



Next use information...

(12) ... = ... x ...
... (no ref to X) ...

(25) x = ...

X is dead at (12) because its value has no further use in the block.
Don’t keep X in a register after (12).

Basic Blocks and CFG 12 / 19



Algorithm to compute next use information

Input: A basic block B of three-address statements. We assume that the
symbol table initially shows all non-temporary variables in B as
being live on exit and their “next use” is empty.

Output: At each statement L : x = y op z in B, we attach to L the
liveness and next-use information of x, y, and z.

begin
List lst = Starting at last statement in B and list of instructions obtained
by scanning backwards to the beginning of B;

foreach statement L: x = y op z ∈ lst do
– Attach to statement L the information currently found in the
symbol table regarding the next use and liveness of x, y, and z;

– In the symbol table, set x to “not live” and “no next use.”;
– In the symbol table, set y and z to “live” and the next uses of y
and z to L ;

end
end

Basic Blocks and CFG 13 / 19



Next use information – Example

Basic Blocks and CFG 14 / 19



CFG - Control flow graph

Definition:
A rooted directed graph G = (N,E), where N is given by the set of
basic blocks + two special BBs: entry and exit.

entry node has no predecessor.
exit node has no successor.

An edge connects two basic blocks b1 and b2 if control can pass
from b1 to b2.
An edge from entry node to the initial basic block.
From each final basic block (with no successors) to exit BB.

Basic Blocks and CFG 15 / 19



CFG continued

successor and predecessor – defined in a natural way.
A basic block is called branch node - if it has more than one
successor.
join node – has more than one predecessor.
For each basic block b:

Succ(b) = {n ∈ N|∃e ∈ E such that e = b → n}
Pred(b) = {n ∈ N|∃e ∈ E such that e = n → b}

A region is a strongly connected subgraph of a flow-graph.

Basic Blocks and CFG 16 / 19



CFG Analysis: Finding Loops

Identifying loops in a CFG is
important for optimizations.
We can identify loops by using
dominators

a node A in the flowgraph dominates
a node B if every path from entry
node to B includes A.

back edge: An edge in the flow graph,
whose destination dominates its
source (example - edge from B6 to
B4.
A loop consists of all nodes
dominated by its entry node (head of
the back edge) and having exactly
one back edge in it.

Basic Blocks and CFG 17 / 19



Dominators

Dominance relation:
Node d dominates node i (written d dom i), if every possible
execution path from entry to i includes d.
Reflexive: a dom a

Antisymmetric: a dom b, b dom a ⇒ a = b

Transitive: if a dom b and b dom c, then a dom c

We write dom(a) to denote the dominators of a.
Questions:

If a dom b, a ̸= b and c ∈ Pred(b), what can be say about a and c?
a dom c.
If c ∈ Pred(b) and a dom c, what can be say about a and b?
Nothing, since a dom b may not hold.

If a ∈
⋂

c∈Pred(b) dom(c), then a dom b.

Basic Blocks and CFG 18 / 19



Identifying loops

Back edge: an edge in the flowgraph, whose destination
dominates its source.(Counter example)

Has a loop, but no back edge – hence not a natural loop.
Given a back edge m → n, the natural loop of m → n is

1 the subgraph consisting of the set of nodes containing n and all the
nodes from which m can be reached in the flowgraph without
passing through n, and

2 Node n is called the loop header.

Basic Blocks and CFG 19 / 19


