

source
code

Scanner |tokens

Parser T

l syntactic structure

emantic | IR " otimizer | IR Code

outines | Optimizer ; Generator
object
code

Challenges in the back end

@ The input to the backend: IR.

@ The target program — instruction set, constraints, number of
registers, etc.

o Instruction selection (undecidable): maps groups of IR instructions
to one or more machine instructions. Why not say each IR
instruction maps to one more more machine level instructions?

o Easy, if we don’t care about the efficiency.
o Choices may be involved (add / inc); may involve understanding of
the context in which the instruction appears.

o Register Allocation (NP-complete): Intermediate code has
unbounded number of temporaries. Need to translate them to
registers (fastest storage).

o Finite number of registers.

o If we cannot allocate on registers, store in the memory — will be
expensive.

o Sub problems: Register allocation, register assignment, spill
location, coalescing. All NP-complete.

Register Allocation 3/44

The Memory Hierarchy

| Access Time | Size
Registers 1 cycle 256-8000 bytes
Cache 5-10 cycles | 256 KB - 40 MB
Main Memory | 20-100 cycles | 4 GB - 32+ GB
Disk 0.5-5M cycles 1-10 TB

Register Allocation

4/44

Managing the Memory Hierarchy

o Most programs are written as if there are only two kinds of
memory: main memory and disk.

@ Programmer is responsible for moving data from disk to memory
(i.e. file I/O).

o Hardware is responsible for moving data between memory and
caches.

o Compiler is responsible for moving data between memory and
registers.

Register Allocation 5/44

Managing the Memory Hierarchy

o Note that there is an order of magnitude difference between
register/cache access and main memory access.
@ Hence, it is very important to
o Manage caches properly.
o Manage registers properly.
o Cache behaviour is in general unpredictable (actually
undecidable).

o Hence, as a compiler designer, managing registers properly
becomes even more important!

Register Allocation 6/44

Register allocation

Register allocation:
o have value in a register when used
o limited resources
o can effect the instruction choices
@ can move loads and stores

o optimal allocation is difficult
= NP-complete for k > 1 registers

Register Allocation 7/44

Basic blocks

A graph representation of intermediate code.

Each basic block is a maximal sequence of 3-address code
instructions with following properties:

@ The flow of control can only enter the basic block through the first
instruction in the block.

@ No jumps into the middle of the block.

o Control leaves the block without halting / branching (except may
be the last instruction of the block).

The basic blocks become the nodes of a flow graph, whose edges
indicate which blocks can follow which other blocks.

Register Allocation 8/44

Example

unsigned int fib(m)
unsigned int m;
{ unsigned int f0 = 0, f1 = 1, £2, i;

if (m <= 1) {
return m;
}
else {
for (i = 2; i <= m; i++) {
f2 = fOo + £f1;
f0 = f1;
f1 = £2;
}
return f2;
}

Register Allocation

OO NN R W=

L1:

L2:

L3:

receive m (val)
fO «< 0

fl « 1

if m <= 1 goto L3
i« 2

if i <= m goto L2
return f2

£f2 <« f0 + f1

f0 « f1

fl1 « £2

i« i+ 1

goto L1

return m

9/44

Example - flow chart and control-flow

1 entry
:

Y N
3

[e]
Y (o<1 2 l ¥ I
I Exm [&2 | B3
3
N i<=m Y

6
=2 s (B a] -
9 f0 <« f1
* | BS |] B6]
10 f1 « f2
n i]

O The high-level abstractions might be lost in the IR.

@ Control-flow analysis can expose control structures not obvious in the
high level code.

Register Allocation 10/44

CFG - Control flow graph

Definition:
o A rooted directed graph G = (N, E), where N is given by the set of
basic blocks + two special BBs: entry and exit.

@ And edge connects two basic blocks b, and b, if control can pass
from b; to bs.

o An edge(s) from entry node to the initial basic block(s?)
@ From each final basic blocks (with no successors) to exit BB.

Register Allocation 11/44

Liveness analysis

Problem:
o IR contains an unbounded number of temporaries
@ machine has bounded number of registers

Approach:
o temporaries with disjoint live ranges can map to same register

@ if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:
It is live if it holds a value that may be needed in future

Register Allocation 12/44

Li: a<0
b+—a+1
cc+b
if ¢ <N goto L;
return ¢

a and b can be allocated to the same register

a0
b—a+1
c+—c+b

if ¢ < N goto L;
return ¢

r ~0
r<nr+1
< nrn+r

if r, < N goto L;
return 7,

Liveness analysis

Gathering liveness information is a form of data flow analysis operating
over the CFG:

o We will treat each statement as a different basic block.

o liveness of variables “flows” through the edges of the graph
o assignments define a variable, v:

o def(v) = set of graph nodes that define v
o defln] = set of variables defined by n where n is a BB.

@ occurrences of v in expressions use it:

o use(v) = set of nodes that use v
o useln] = set of variables used in n where n is a BB.

Register Allocation 15/44

Definitions

(%)

v is live on edge e if there is a directed path from e to a use of v
that does not pass through any def(v)

v is live-in at node n if live on any of n’s in-edges
v is live-out at # if live on any of n’s out-edges

v € use[n]| = v live-in at n (recall: each statement is its own basic
block).

v live-in at n = v live-out at all m € pred[n]

© ©

©

© ©

vlive-outatn A v & def[n] = v live-in at n

Register Allocation 16/44

Liveness analysis

Define:
in[n] = variables live-in at n
outln] = variables live-out at n
Then:
outlh] = |J in[s]
sesucc(n)
succlnl|=¢ = oufln]=¢
Note:
infn] 2 useln]
in[n] 2 outn] — defln]

useln] and defln] are constant (independent of control flow)
Now, v € in[n] iff. v € use[n] or v € out{n] — defin]
Thus, in[n] = use[n] U (out[n] — defln])

Register Allocation 17/44

lterative solution for liveness

N : Set of nodes of CFG;
foreach n € N do
in[n] < ¢;
out[n] < ¢;
end
repeat
foreach n € Nodes do
in'[n] + in[n];
out'[n] < out|n];
in[n] < use[n]) U (out[n] — def[n]);
Out[n] = Usesucc[n] ln[S] ;
end
until Vn,in'[n] = in[n] A out'[n] = out[n] ;

Register Allocation

18/44

{b,c,f}

a=b+c
{a,cf}
d=-a
{c,d,f}

e=d+f

Notes

@ should order computation of inner loop of the data-flow analysis
algorithm to follow the “flow”

o liveness flows backward along control-flow arcs, from out to in
@ nodes can just as easily be basic blocks to reduce CFG size

o could do one variable at a time, from uses back to defs, noting
liveness along the way

Register Allocation 21/44

lterative solution for liveness

Complexity: for input program of size N
@ <N nodes in CFG
=< N variables
=- N elements per in/out
= O(N) time per set-union
o for loop performs constant number of set operations per node
= O(N?) time for for loop

o each iteration of repeat loop can only add to each set
sets can contain at most every variable
= sizes of all in and out sets sum to 2N7?,
bounding the number of iterations of the repeat loop
= worst-case complexity of O(N*)

@ ordering can cut repeat loop down to 2-3 iterations
= O(N) or O(N?) in practice

Register Allocation 22/44

Least fixed points

There is often more than one solution for a given dataflow problem.

o For example, if a variable x is never used or defined, then adding x
to the in and out sets of every basic block is also a valid solution.

Many possible solutions but we want the “smallest”: the least fixpoint.
The iterative algorithm computes this least fixpoint.
Any solution to dataflow equations is a conservative approximation:
@ v has some later use downstream from n
= v € oul(n)

o but not the converse

Conservatively assuming a variable is live does not break the program;
just means more registers may be needed.
Assuming a variable is dead when really live will break things.

Register Allocation 23/44

Register Interference Graph

@ An undirected graph

o A node for each temporary/variable.
o An edge between 1, and r, if they are live simultaneously at some
point in the program.

o Two temporaries can be allocated to the same register if there is
no edge connecting them.

o The register interference graph extracts exactly the information
needed to perform legal register assignments.

@ Also gives a global picture (i.e. over the entire flow graph) of the
register requirements.

Register Allocation 24/44

Example: Register Interference Graph

The Register Interference Graph for our example program:

a

@ b and ¢ cannot be assigned the same register.

@ b and d can be assigned the same register.

@ How many registers?Same as the number of colors required for
coloring the graph.

Register Allocation 25/44

Register allocation - by Graph coloring

o Step 1:
o Select target machine instructions assuming infinite registers
(temps).
o If a instruction requires a special register — replace that temp with
that register.
o Step 2:
o Construct the interference graph.
o Solve the register allocation problem by coloring the graph.
o A graph is said to be colored if each pair of neighboring nodes have
different colors.

Register Allocation 26/44

Example: Colored RIG

a
n
f b
7 s
e c

Ty

Register Allocation 27/44

Computing Graph Colorings

@ How do we compute graph colorings?

@ The problem is NP-Hard. No efficient algorithms are known.
o Solution: We will use heuristics.

@ A coloring may not exist for a given number of registers/colors.
o Solution: We will use systematic spilling.

Register Allocation 28/44

Graph Coloring Heuristic

o Observation:
o Pick a node r with fewer than k neighbours in RIG.
o Eliminate ¢ and its edges from RIG.
o If the resulting graph is k-colorable, then so is the original graph.

o Why?
o Letey,cy,...,c, be the colors assigned to neighbours of ¢ in the
reduced graph.

o Since n < k, we can pick a color for t among k colors that is different
from those of its neighbours.

Register Allocation 29/44

Graph coloring - a simplistic approach

Input: G - the interference graph, k - number of colors

repeat

repeat

Remove a node » and all its edges from G, such that degree of n is

less than K;

Push n onto a stack;

until G has no node with degree less than k;

// G is either empty or all of its nodes have
degree >k

if G is not empty then
Take one node m out of G, and mark it for spilling;
Remove all the edges of m from G;

end

until G is empty;

Take one node at a time from the stack and assign a non conflicting color.

Register Allocation 30/44

We have to spill.

Graph coloring - Kempe’s heuristic

o Algorithm dating back to 1879.
0 Also called ‘optimistic coloring'.

Input: G - the interference graph, K - number of colors
repeat
repeat
Remove a node n and all its edges from G, such that degree of n is
less than K;
Push n onto a stack;
until G has no node with degree less than K;;
// G is either empty or all of its nodes have
degree > K
if G is not empty then
Take one node m out of G.;
push m onto the stack;
end
until G is empty;
Take one node at a time from the stack and assign a non conflicting color
(if possible, else spill).

Register Allocation 33/44

We don’t have to spill.

Don’t have a choice. Have to spill.

Spilling

o We need to generate extra instructions to load variables from the
stack and store them back.
o The load and store may require registers again:

o Naive approach: Keep a separate register (wasteful).

o Rewrite the code - by introducing a temporary; rerun the liveness +
register-allocation
(Note: the new temp has much smaller live range).

Register Allocation 36/44

Example: Spilling

Going back to our running example, suppose we only have 3 registers,
and decide to spill f.

Register Allocation 37/44

f2=2%e
[fa] = f2

Example: Recomputing Liveness after rewrite

{b,c,f}

a=b+c
{a,c,f}
d=-a
{c,d,f}

f1 = [fa]
{c,d,f1}

e=d+fl

/@,e,f}\@’d’e’ﬂ
{c.e} b=d+e

f2=2%e {c,e,#}
{c,f2} e=e-1

[fa] = f2 ©ff — ff
fef 3 = (fal
{3}
b=f3+c

{b}

Register Allocation

39/44

Example: RIG after rewrite

f1
f2 b
f3
e C

Homework: Find a register allocation using 3 registers, and rewrite the
program using the allocated registers.

Register Allocation 40/44

Register allocation - Linear scan

Register allocation is expensive.

@ Many algorithms use heuristics for graph coloring.

@ Allocation may take time quadratic in the number of live intervals.
Not suitable

o Online compilers — need to generate code quickly. e.g. JIT
compilers.

o Sacrifice efficient register allocation for compilation speed.

Linear scan register allocation - Massimiliano Poletto and Vivek
Sarkar, ACM TOPLAS 1999

Register Allocation 41/44

Linear Scan algorithm

LINEARSCANREGISTERALLOCATION
active «— {}
foreach live interval i, in order of increasing start point
EXPIREQOLDINTERVALS(%)
if length(active) = R then
SPILLATINTERVAL(Z)

else
register[i] «— a register removed from pool of free registers

add i to active, sorted by increasing end point

EXPIREOLDINTERVALS(%)
foreach interval j in active, in order of increasing end point

if endpoint[j] > startpoint[i] then
return

remove j from active

add register[j] to pool of free registers

SPILLATINTERVAL(Z)
spill +— last interval in active
if endpoint[spill] > endpoint[i] then
register(i] «— register|(spill
location[spill] +— new stack location
remove spill from active
add 2 to active, sorted by increasing end point
else
location[i] +— new stack location

Register Allocation

42/44

Example

m O O o >

1 2 3 4 5

o Say, available registers = 2

Register Allocation 43/44

Linear Scan algorithm - analysis

o Each live range gets either a register or a spill location.
o Note: The number of overlapping intervals changes only at the
start and end points of an interval.

o Live intervals are stored in a list that is sorted in order of
increasing start point.

o The active list is kept sorted in order of increasing end point. Adv:
need to scan only those intervals (+1 at most) that have to be
removed.

o Complexity: O(V) — if number of registers is assumed to be a
constant. Else? O(V x logR)

@ Many more details can be found in the paper.
o Study section 4 of the paper (Poletto et al. ACM TOPLAS 1999).

Register Allocation 44/44

