
Liveness Analysis and Register Allocation



The Compiler

code
object

code
source

IRIR

tokens

syntactic structure

Scanner

Routines
Semantic

Parser

Optimizer Code
Generator

Table

Symbol

Register Allocation 2 / 44



Challenges in the back end

The input to the backend: IR.
The target program – instruction set, constraints, number of
registers, etc.
Instruction selection (undecidable): maps groups of IR instructions
to one or more machine instructions. Why not say each IR
instruction maps to one more more machine level instructions?

Easy, if we don’t care about the efficiency.
Choices may be involved (add / inc); may involve understanding of
the context in which the instruction appears.

Register Allocation (NP-complete): Intermediate code has
unbounded number of temporaries. Need to translate them to
registers (fastest storage).

Finite number of registers.
If we cannot allocate on registers, store in the memory – will be
expensive.
Sub problems: Register allocation, register assignment, spill
location, coalescing. All NP-complete.

Register Allocation 3 / 44



The Memory Hierarchy

Access Time Size
Registers 1 cycle 256-8000 bytes

Cache 5-10 cycles 256 KB - 40 MB
Main Memory 20-100 cycles 4 GB - 32+ GB

Disk 0.5-5M cycles 1-10 TB

Register Allocation 4 / 44



Managing the Memory Hierarchy

Most programs are written as if there are only two kinds of
memory: main memory and disk.
Programmer is responsible for moving data from disk to memory
(i.e. file I/O).
Hardware is responsible for moving data between memory and
caches.
Compiler is responsible for moving data between memory and
registers.

Register Allocation 5 / 44



Managing the Memory Hierarchy

Note that there is an order of magnitude difference between
register/cache access and main memory access.
Hence, it is very important to

Manage caches properly.
Manage registers properly.

Cache behaviour is in general unpredictable (actually
undecidable).

Hence, as a compiler designer, managing registers properly
becomes even more important!

Register Allocation 6 / 44



Register allocation

Register allocation:
have value in a register when used
limited resources
can effect the instruction choices
can move loads and stores
optimal allocation is difficult
⇒ NP-complete for k ≥ 1 registers

Register Allocation 7 / 44



Basic blocks

A graph representation of intermediate code.

Each basic block is a maximal sequence of 3-address code
instructions with following properties:

The flow of control can only enter the basic block through the first
instruction in the block.
No jumps into the middle of the block.
Control leaves the block without halting / branching (except may
be the last instruction of the block).

The basic blocks become the nodes of a flow graph, whose edges
indicate which blocks can follow which other blocks.

Register Allocation 8 / 44



Example

Register Allocation 9 / 44



Example - flow chart and control-flow

The high-level abstractions might be lost in the IR.

Control-flow analysis can expose control structures not obvious in the
high level code.

Register Allocation 10 / 44



CFG - Control flow graph

Definition:
A rooted directed graph G = (N,E), where N is given by the set of
basic blocks + two special BBs: entry and exit.
And edge connects two basic blocks b1 and b2 if control can pass
from b1 to b2.
An edge(s) from entry node to the initial basic block(s?)
From each final basic blocks (with no successors) to exit BB.

Register Allocation 11 / 44



Liveness analysis

Problem:
IR contains an unbounded number of temporaries
machine has bounded number of registers

Approach:
temporaries with disjoint live ranges can map to same register
if not enough registers then spill some temporaries
(i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:
It is live if it holds a value that may be needed in future

Register Allocation 12 / 44



Example

L1 : a← 0
b← a+1
c← c+b
if c < N goto L1
return c

a and b can be allocated to the same register

Register Allocation 13 / 44



Example

L1 : a← 0
b← a+1
c← c+b
if c < N goto L1
return c

L1 : r1← 0
r1← r1 +1
r2← r2 + r1
if r2 < N goto L1
return r2

Register Allocation 14 / 44



Liveness analysis

Gathering liveness information is a form of data flow analysis operating
over the CFG:

We will treat each statement as a different basic block.
liveness of variables “flows” through the edges of the graph
assignments define a variable, v:

def(v) = set of graph nodes that define v
def[n] = set of variables defined by n where n is a BB.

occurrences of v in expressions use it:
use(v) = set of nodes that use v
use[n] = set of variables used in n where n is a BB.

Register Allocation 15 / 44



Definitions

v is live on edge e if there is a directed path from e to a use of v
that does not pass through any def(v)
v is live-in at node n if live on any of n’s in-edges
v is live-out at n if live on any of n’s out-edges
v ∈ use[n]⇒ v live-in at n (recall: each statement is its own basic
block).
v live-in at n⇒ v live-out at all m ∈ pred[n]
v live-out at n ∧ v ̸∈ def[n]⇒ v live-in at n

Register Allocation 16 / 44



Liveness analysis

Define:

in[n] = variables live-in at n

out[n] = variables live-out at n

Then:

out[n] =
⋃

s∈succ(n)

in[s]

succ[n] = φ ⇒ out[n] = φ

Note:

in[n] ⊇ use[n]
in[n] ⊇ out[n]−def[n]

use[n] and def[n] are constant (independent of control flow)
Now, v ∈ in[n] iff. v ∈ use[n] or v ∈ out[n]−def[n]
Thus, in[n] = use[n]∪ (out[n]−def[n])

Register Allocation 17 / 44



Iterative solution for liveness

N : Set of nodes of CFG;
foreach n ∈ N do

in[n]← φ ;
out[n]← φ ;

end
repeat

foreach n ∈ Nodes do
in′[n]← in[n];
out′[n]← out[n];
in[n]← use[n]∪ (out[n]−def [n]);
out[n]←

⋃
s∈succ[n] in[s] ;

end
until ∀n, in′[n] = in[n]∧out′[n] = out[n] ;

Register Allocation 18 / 44



Example

b = f + c

f = 2 * e
b = d + e

e = e - 1

a = b + c

d = -a

e = d + f

{b}

Register Allocation 19 / 44



Example

b = f + c

f = 2 * e
b = d + e

e = e - 1

a = b + c

d = -a

e = d + f

{b}

{c,f}

{c,f}

{c,e,f}

{c,d,e,f}

{c,f}

{c,e}

{c,d,e,f}

{c,d,f}

{a,c,f}

{b,c,f}

Register Allocation 20 / 44



Notes

should order computation of inner loop of the data-flow analysis
algorithm to follow the “flow”
liveness flows backward along control-flow arcs, from out to in
nodes can just as easily be basic blocks to reduce CFG size
could do one variable at a time, from uses back to defs, noting
liveness along the way

Register Allocation 21 / 44



Iterative solution for liveness

Complexity: for input program of size N

≤ N nodes in CFG
⇒≤ N variables
⇒ N elements per in/out
⇒ O(N) time per set-union
for loop performs constant number of set operations per node
⇒ O(N2) time for for loop
each iteration of repeat loop can only add to each set
sets can contain at most every variable
⇒ sizes of all in and out sets sum to 2N2,
bounding the number of iterations of the repeat loop

⇒ worst-case complexity of O(N4)

ordering can cut repeat loop down to 2-3 iterations
⇒ O(N) or O(N2) in practice

Register Allocation 22 / 44



Least fixed points

There is often more than one solution for a given dataflow problem.
For example, if a variable x is never used or defined, then adding x
to the in and out sets of every basic block is also a valid solution.

Many possible solutions but we want the “smallest”: the least fixpoint.
The iterative algorithm computes this least fixpoint.
Any solution to dataflow equations is a conservative approximation:

v has some later use downstream from n
⇒ v ∈ out(n)
but not the converse

Conservatively assuming a variable is live does not break the program;
just means more registers may be needed.
Assuming a variable is dead when really live will break things.

Register Allocation 23 / 44



Register Interference Graph

An undirected graph
A node for each temporary/variable.
An edge between t1 and t2 if they are live simultaneously at some
point in the program.

Two temporaries can be allocated to the same register if there is
no edge connecting them.
The register interference graph extracts exactly the information
needed to perform legal register assignments.
Also gives a global picture (i.e. over the entire flow graph) of the
register requirements.

Register Allocation 24 / 44



Example: Register Interference Graph

The Register Interference Graph for our example program:

a

b

c

d

e

f

b and c cannot be assigned the same register.
b and d can be assigned the same register.
How many registers?Same as the number of colors required for
coloring the graph.

Register Allocation 25 / 44



Register allocation - by Graph coloring

Step 1:
Select target machine instructions assuming infinite registers
(temps).
If a instruction requires a special register – replace that temp with
that register.

Step 2:
Construct the interference graph.
Solve the register allocation problem by coloring the graph.
A graph is said to be colored if each pair of neighboring nodes have
different colors.

Register Allocation 26 / 44



Example: Colored RIG

a

b

c

d

e

f

𝑟!

𝑟"

𝑟#

𝑟$

𝑟!

𝑟$
𝑟! = 𝑟" + 𝑟#

𝑟" = 2 * 𝑟! 𝑟! = 𝑟$ + 𝑟!
𝑟! = 𝑟! - 1

𝑟$ = 𝑟! + 𝑟#
𝑟$ = - 𝑟$
𝑟! = 𝑟$ + 𝑟"

Register Allocation 27 / 44



Computing Graph Colorings

How do we compute graph colorings?
The problem is NP-Hard. No efficient algorithms are known.

Solution: We will use heuristics.
A coloring may not exist for a given number of registers/colors.

Solution: We will use systematic spilling.

Register Allocation 28 / 44



Graph Coloring Heuristic

Observation:
Pick a node t with fewer than k neighbours in RIG.
Eliminate t and its edges from RIG.
If the resulting graph is k-colorable, then so is the original graph.

Why?
Let c1,c2, . . . ,cn be the colors assigned to neighbours of t in the
reduced graph.
Since n < k, we can pick a color for t among k colors that is different
from those of its neighbours.

Register Allocation 29 / 44



Graph coloring - a simplistic approach

Input: G - the interference graph, k - number of colors
repeat

repeat
Remove a node n and all its edges from G, such that degree of n is
less than K;

Push n onto a stack;
until G has no node with degree less than k;
// G is either empty or all of its nodes have

degree ≥ k
if G is not empty then

Take one node m out of G, and mark it for spilling;
Remove all the edges of m from G;

end
until G is empty;
Take one node at a time from the stack and assign a non conflicting color.

Register Allocation 30 / 44



Example 1, available colors = 2

Register Allocation 31 / 44



Example 2

We have to spill.

Register Allocation 32 / 44



Graph coloring - Kempe’s heuristic

Algorithm dating back to 1879.

Also called ‘optimistic coloring’.

Input: G - the interference graph, K - number of colors
repeat

repeat
Remove a node n and all its edges from G, such that degree of n is
less than K;

Push n onto a stack;
until G has no node with degree less than K;
// G is either empty or all of its nodes have

degree ≥ K
if G is not empty then

Take one node m out of G.;
push m onto the stack;

end
until G is empty;
Take one node at a time from the stack and assign a non conflicting color
(if possible, else spill).

Register Allocation 33 / 44



Example 2 (revisited)

We don’t have to spill.

Register Allocation 34 / 44



Example 3

Don’t have a choice. Have to spill.

Register Allocation 35 / 44



Spilling

We need to generate extra instructions to load variables from the
stack and store them back.
The load and store may require registers again:

Naive approach: Keep a separate register (wasteful).
Rewrite the code - by introducing a temporary; rerun the liveness +
register-allocation
(Note: the new temp has much smaller live range).

Register Allocation 36 / 44



Example: Spilling

Going back to our running example, suppose we only have 3 registers,
and decide to spill f .

a

b

c

d

e

f

a

b

c

d

e

Register Allocation 37 / 44



Example: Rewrite for spilled variable

f3 = [fa] 
b = f3 + c

f2 = 2 * e
[fa] = f2 

b = d + e
e = e - 1

a = b + c
d = -a

f1 = [fa]
e = d + f1

Register Allocation 38 / 44



Example: Recomputing Liveness after rewrite

f3 = [fa]
{c,f3}

b = f3 + c

f2 = 2 * e
{c,f2}

[fa] = f2 

b = d + e

e = e - 1

a = b + c

d = -a

f1 = [fa]
{c,d,f1}

e = d + f1

{b}

{c,f} {c,f}

{c,e,f}

{c,d,e,f}

{c,f}

{c,e}

{c,d,e,f}

{c,d,f}

{a,c,f}

{b,c,f}

Register Allocation 39 / 44



Example: RIG after rewrite

a

b

c

d

e

f1

f2

f3

Homework: Find a register allocation using 3 registers, and rewrite the
program using the allocated registers.

Register Allocation 40 / 44



Register allocation - Linear scan

Register allocation is expensive.
Many algorithms use heuristics for graph coloring.
Allocation may take time quadratic in the number of live intervals.

Not suitable
Online compilers – need to generate code quickly. e.g. JIT
compilers.
Sacrifice efficient register allocation for compilation speed.

Linear scan register allocation - Massimiliano Poletto and Vivek
Sarkar, ACM TOPLAS 1999

Register Allocation 41 / 44



Linear Scan algorithm

Register Allocation 42 / 44



Example

Say, available registers = 2

Register Allocation 43 / 44



Linear Scan algorithm - analysis

Each live range gets either a register or a spill location.
Note: The number of overlapping intervals changes only at the
start and end points of an interval.
Live intervals are stored in a list that is sorted in order of
increasing start point.

The active list is kept sorted in order of increasing end point. Adv:
need to scan only those intervals (+1 at most) that have to be
removed.

Complexity: O(V) – if number of registers is assumed to be a
constant. Else? O(V× logR)

Many more details can be found in the paper.
Study section 4 of the paper (Poletto et al. ACM TOPLAS 1999).

Register Allocation 44 / 44


