
Syntax Directed Translation

Syntax-Directed Translation

Attach rules or program fragments to productions in a grammar.
The compilation process is guided by context-free grammars.

Symbol table generation, type-checking, intermediate code
generation, etc. are all carried out by syntax-directed translations.

The main idea is to associate attributes with grammar symbols.

Two ways to perform syntax-directed translations:
1 Syntax directed definition (SDD)

E1→ E2 +T E1.code = E2.code||T.code||′+′
2 Syntax directed translation Scheme (SDT)

E→ E+T {print ’+’} // semantic action
F→ id {print id.val}

Syntax Directed Translation 2 / 29

SDD and SDT scheme

SDD: Specifies the values of attributes by associating semantic
rules with the productions.
SDT scheme: embeds program fragments (also called semantic
actions) within production bodies.

The position of the action defines the order in which the action is
executed (in the middle of production or end).

SDD is easier to read; easy for specification.
SDT scheme – can be more efficient; easy for implementation.

Syntax Directed Translation 3 / 29

Example: SDD vs SDT scheme – infix to postfix trans

SDTScheme
E→ E+T {print′+′}
E→ E−T {print′−′}
E→ T
T→ 0 {print′0′}
T→ 1 {print′1′}
· · ·
T→ 9 {print′9′}

SDD
E→ E+T E.code = E.code||T.code||′+′
E→ E−T E.code = E.code||T.code||′−′
E→ T E.code = T.code
T→ 0 T.code =′ 0′

T→ 1 T.code =′ 1′

· · ·
T→ 9 T.code =′ 9′

Syntax Directed Translation 4 / 29

Syntax directed translation - Parse tree

Idiomatic syntax directed translation does the following:
1 Construct a parse tree
2 Compute the values of the attributes at the nodes of the tree by

visiting the tree

Key: We don’t need to build a parse tree all the time.
Translation can be done during parsing.

Syntax Directed Translation 5 / 29

Attributes

Attribute is any quantity associated with a programming construct.
Example: data types, line numbers, instruction details

Two kinds of attributes: for a non-terminal A, at a parse tree node N
A synthesized attribute:

defined by a semantic rule associated with the production at N.
defined only in terms of attribute values at the children of N and at
N itself.

An inherited attribute:
defined by a semantic rule associated with the parent production of
N.
defined only in terms of attribute values at the parent of N, siblings
of N and at N itself.

Syntax Directed Translation 6 / 29

Specifying the actions: Attribute grammars

Idea: attribute the parse tree
can add attributes (fields) to each node
specify equations to define values (unique)
can use attributes from parent and children

Example: to ensure that constant variables are immutable:
add type (int,bool,...) and kind (var, const) attributes
expression nodes.
rules for production on := (assignment) that

1 check that LHS kind is var
2 check that LHS type and RHS type are consistent or conform

Syntax Directed Translation 7 / 29

Attribute grammars

Formally, we define the notion of attribute grammars:
grammar-based specification of parse-tree attributes
value assignments associated with productions
each attribute uniquely, locally defined
label identical terms uniquely

Can specify context-sensitive actions with attribute grammars

Syntax Directed Translation 8 / 29

Example

PRODUCTION SEMANTIC RULES

D → T L L.in := T.type
T → int T.type := integer
T → real T.type := real
L → L1 , id L1.in := L.in

addtype(id.entry,L.in)
L → id addtype(id.entry,L.in)

Syntax Directed Translation 9 / 29

Example: Evaluate signed binary numbers

PRODUCTION SEMANTIC RULES

NUM → SIGN LIST

SIGN→ +
SIGN→ -
LIST → BIT

LIST → LIST1 BIT

BIT → 0
BIT → 1

Syntax Directed Translation 10 / 29

Example: Evaluate signed binary numbers

PRODUCTION SEMANTIC RULES

NUM → SIGN LIST LIST.pos := 0
if SIGN.neg

NUM.val := -LIST.val
else

NUM.val := LIST.val
SIGN→ + SIGN.neg := false
SIGN→ - SIGN.neg := true
LIST → BIT BIT.pos := LIST.pos

LIST.val := BIT.val
LIST → LIST1 BIT LIST1.pos := LIST.pos + 1

BIT.pos := LIST.pos
LIST.val := LIST1.val + BIT.val

BIT → 0 BIT.val := 0
BIT → 1 BIT.val := 2BIT.pos

Syntax Directed Translation 11 / 29

Example (continued)

The attributed parse tree for -101:

val: -5NUM

neg: TSIGN

-

pos: 0

val: 5

LIST

pos: 1

val: 4

LIST

pos: 2

val: 4

LIST

pos: 2

val: 4

BIT

1

pos: 1

val: 0

BIT

0

pos: 0

val: 1

BIT

1

val and neg are
synthesized attributes
pos is an inherited
attribute

Syntax Directed Translation 12 / 29

Dependences between attributes

values are computed from constants & other attributes
synthesized attribute – value computed from children
inherited attribute – value computed from siblings & parent
key notion: induced dependency graph

Syntax Directed Translation 13 / 29

The attribute dependency graph

nodes represent attributes
edges represent flow of values
graph is specific to parse tree
size is related to parse tree’s size
can be built alongside parse tree

The dependency graph must be acyclic

Evaluation order:
topological sort the dependency graph to order attributes
using this order, evaluate the rules

The order depends on both the grammar and the input string

Syntax Directed Translation 14 / 29

Example (continued)

The attribute dependency graph:

val: -5NUM

neg: TSIGN

-

pos: 0

val: 5

LIST0

pos: 1

val: 4

LIST1

pos: 2

val: 4

LIST2

pos: 2

val: 4

BIT0

1

pos: 1

val: 0

BIT1

0

pos: 0

val: 1

BIT2

1

0

Syntax Directed Translation 15 / 29

Example: A topological order

1 SIGN.neg
2 LIST0.pos
3 LIST1.pos
4 LIST2.pos
5 BIT0.pos
6 BIT1.pos
7 BIT2.pos
8 BIT0.val
9 LIST2.val

10 BIT1.val
11 LIST1.val
12 BIT2.val
13 LIST0.val
14 NUM.val

Evaluating in this order yields NUM.val: -5

Syntax Directed Translation 16 / 29

Evaluation strategies

Parse-tree methods (dynamic)
1 build the parse tree
2 build the dependency graph
3 topological sort the graph
4 evaluate it (cyclic graph fails)

What if there are cycles?

Syntax Directed Translation 17 / 29

Avoiding cycles

Hard to tell, for a given grammar, whether there exists any parse
tree whose dependency graphs have cycles.
Focus on classes of SDD’s that guarantee an evaluation order –
do not permit dependency graphs with cycles.

L-attributed – class of SDTs called “L-attributed translations”.
S-attributed – class of SDTs called “S-attributed translations”.

Syntax Directed Translation 18 / 29

L-Attributed Grammars

Informally – allows both synthesized and inherited attributes, but
dependency-graph edges may only go from left to right, not other way
around.

Given production A→ X1X2 · · ·Xn

Synthesized attributes of A
Inherited attributes of Xj depend only on:

1 Inherited attributes of A
2 Arbitrary attributes of X1,X2, · · ·Xj−1

i.e., evaluation order:
Inh(A), Inh(X1), Syn(X1), . . . , Inh(Xn), Syn(Xn), Syn(A) This is precisely
the order of evaluation for an LL parser

Syntax Directed Translation 19 / 29

L-Attributed Grammar: Examples

PRODUCTION SEMANTIC RULES

D → T L L.in := T.type
T → int T.type := integer
T → real T.type := real
L → L1 , id L1.in := L.in

addtype(id.entry,L.in)
L → id addtype(id.entry,L.in)

Syntax Directed Translation 20 / 29

L-Attributed Grammar: Examples

PRODUCTION SEMANTIC RULES

NUM → SIGN LIST LIST.pos := 0
if SIGN.neg

NUM.val := -LIST.val
else

NUM.val := LIST.val
SIGN→ + SIGN.neg := false
SIGN→ - SIGN.neg := true
LIST → BIT BIT.pos := LIST.pos

LIST.val := BIT.val
LIST → LIST1 BIT LIST1.pos := LIST.pos + 1

BIT.pos := LIST.pos
LIST.val := LIST1.val + BIT.val

BIT → 0 BIT.val := 0
BIT → 1 BIT.val := 2BIT.pos

Syntax Directed Translation 21 / 29

Evaluating attributes of L-attributed grammar

Perform depth-first traversal starting from the root of the parse
tree:
void depth-first (N) {

evaluate the inherited attributes of N;
for (each child C of N in left-to-right order)
do
depth-first(C);

done
evaluate the synthesized attributes of N;

}

Note that this order of visiting nodes corresponds to the exact
order in which top-down parser builds the parse tree.
Thus, we can also evaluate L-attributed grammars in one
top-down (LL) pass.

Syntax Directed Translation 22 / 29

SDT for L-Attributed Grammars

Embed the action which evaluates an attribute inside the body of
the production.
The action for evaluating an inherited attribute for X is placed
immediately before the occurrence of X in the body of the
production.
The action for evaluating a synthesized attribute for A is placed
after the entire body of the production.

The SDT for A→ X1X2 . . .Xn is
A→{INH(X1) = · · ·}X1{INH(X2) = · · ·}X2 . . .Xn{SYN(A) = · · ·}

Syntax Directed Translation 23 / 29

S-attributed Grammars

allows only synthesized attributes for non-terminals
equivalently, semantic actions at far right of a RHS

Can evaluate S-attributed in one bottom-up (LR) pass.

Syntax Directed Translation 24 / 29

Evaluating attributes of S-attributed grammar

Evaluate it in any bottom-up order of the nodes in the parse tree.
Apply postorder to the root of the parse tree:
void postorder (N) {
for (each child C of N)
do
postorder(C);

done
evaluate the attributes associated with N;
}

Post order traversal of the parse tree corresponds to the exact
order in which the bottom-up parsing builds the parse tree.
Thus, we can evaluate S-attributed grammars in one bottom-up
(LR) pass.

Syntax Directed Translation 25 / 29

LL parsers and actions

How can we directly evaluate attributes in a L-attributed SDT during LL
parsing?

During LL Parsing, we expand productions before scanning RHS

symbols, so:
push actions onto parse stack like other grammar symbols
pop and perform action when it comes to top of parse stack

Syntax Directed Translation 26 / 29

LL parsers and actions

push EOF
push Start Symbol
token← next token()
repeat

pop X
if X is a terminal or EOF then

if X = token then
token← next token()

else error()
else if X is an action

perform X
else /* X is a non-terminal */

if M[X,token] = X→ Y1Y2 · · ·Yk then
push Yk,Yk−1, · · · ,Y1

else error()
until X = EOF

The attribute values can be stored on the stack as well. For more details, refer to Dragon Book, Chapter 5, Section 5.5.3.

Syntax Directed Translation 27 / 29

LR parsers and actions

What about LR parsers?
In LR Parsing, we scan entire RHS before applying production, so:

cannot perform actions until entire RHS scanned
can only place actions at very end of RHS of production
introduce new marker non-terminals and corresponding
productions to get around this restriction

A→ w action β

becomes
A→Mβ

M→ w action

For more details, refer to Dragon Book, Chapter 5, Section 5.5.4

Syntax Directed Translation 28 / 29

Inherited Vs Synthesised attributes

Synthesized attributes are limited

Inherited attributes (are good): derive values from constants, parents,
siblings

used to express context (context-sensitive checking)
inherited attributes are more “natural”

We want to use both kinds of attributes
can always rewrite L-attributed LL grammars (using markers) to
avoid inherited attribute problems with LR

Syntax Directed Translation 29 / 29

