

Syntax-Directed Translation

@ Attach rules or program fragments to productions in a grammar.
o The compilation process is guided by context-free grammars.
o Symbol table generation, type-checking, intermediate code
generation, etc. are all carried out by syntax-directed translations.

o The main idea is to associate attributes with grammar symbols.

o Two ways to perform syntax-directed translations:
@ Syntax directed definition (SDD)
0 E| > Ey+T E|.code = E,.code||T.code||'+'
@ Syntax directed translation Scheme (SDT)

o E—E+T {print’+} // semantic action
o F—id {print id.val}

Syntax Directed Translation 2/29

SDD and SDT scheme

o SDD: Specifies the values of attributes by associating semantic
rules with the productions.

@ SDT scheme: embeds program fragments (also called semantic
actions) within production bodies.

o The position of the action defines the order in which the action is
executed (in the middle of production or end).

o SDD is easier to read; easy for specification.
o SDT scheme — can be more efficient; easy for implementation.

Syntax Directed Translation 3/29

Example: SDD vs SDT scheme — infix to postfix trans

SDTScheme

SDD

E—E+T {print+'}
E—E—-T {print'—'}

E—T
T—0
T—1

T—9

{print'0'}
{print'1'}

{print'9'}

E—E+T
E—E-T
E—T
T—0
T—1

T—9

Syntax Directed Translation

E.code = E.code||T.code|| +'
E.code = E.code||T .code||'—'
E.code =T.code

T.code ="/
T.code ="1’
T.code ="9’

4/29

Syntax directed translation - Parse tree

Idiomatic syntax directed translation does the following:
@ Construct a parse tree

@ Compute the values of the attributes at the nodes of the tree by
visiting the tree

Key: We don’t need to build a parse tree all the time.
o Translation can be done during parsing.

Syntax Directed Translation 5/29

Attributes

o Attribute is any quantity associated with a programming construct.
o Example: data types, line numbers, instruction details

Two kinds of attributes: for a non-terminal A, at a parse tree node N
o A synthesized attribute:

o defined by a semantic rule associated with the production at N.
o defined only in terms of attribute values at the children of N and at
N itself.

o An inherited attribute:

o defined by a semantic rule associated with the parent production of
N.

o defined only in terms of attribute values at the parent of N, siblings
of N and at N itself.

Syntax Directed Translation 6/29

Specifying the actions: Attribute grammars

Idea: attribute the parse tree
@ can add attributes (fields) to each node
o specify equations to define values (unique)
@ can use attributes from parent and children

Example: to ensure that constant variables are immutable:
@ add type (int,bool, ...) and kind (var, const) attributes
expression nodes.
o rules for production on : = (assignment) that

@ check that LHS kind is var
@ check that LHS type and RHS type are consistent or conform

Syntax Directed Translation 7/29

Attribute grammars

Formally, we define the notion of attribute grammars:
o grammar-based specification of parse-tree attributes
o value assignments associated with productions
@ each attribute uniquely, locally defined
o label identical terms uniquely

Can specify context-sensitive actions with attribute grammars

Syntax Directed Translation

8/29

Example

PRODUCTION | SEMANTIC RULES

D —-TL L.in := T .type

T — int T .type := integer

T — real T .type :=real

L — L s id Ll.in :=L.in
addtype(id.entry, L.in)

L — id addtype(id.entry, L.in)

Syntax Directed Translation 9/29

Example: Evaluate signed binary numbers

PRODUCTION SEMANTIC RULES
NUM — SIGN LIST

SIGN — +
SIGN — -
LIST — BIT

LIST — LIST; BIT

BIT —o0
BIT —1

Syntax Directed Translation 10/29

Example: Evaluate signed binary numbers

PRODUCTION

SEMANTIC RULES

NUM — SIGN LIST

SIGN — +
SIGN — -
LIST — BIT

LIST — LIST; BIT

BIT —o0
BIT —1

LIST.pos :=0
if SIGN.neg

NUM.val := -LIST.val
else

NUM.val := LIST.val
SIGN.neg := false
SIGN.neg :=true
BIT.pos := LIST.pos
LIST.val := BIT.val
LIST,.pos := LIST.pos + 1
BIT.pos := LIST.pos

LIST.val := LIST,.val + BIT.val

BlT.val := 0
BlT.val := 2BIT»os

Syntax Directed Translation

11/29

Example (continued)

The attributed parse tree for -101:

SIGN (neg: T

o valand neg are
synthesized attributes

@ pos is an inherited
attribute

Syntax Directed Translation 12/29

Dependences between attributes

o values are computed from constants & other attributes

o synthesized attribute — value computed from children

o Inherited attribute — value computed from siblings & parent
@ key notion: induced dependency graph

Syntax Directed Translation 13/29

The attribute dependency graph

@ nodes represent attributes

o edges represent flow of values

@ graph is specific to parse tree

o size is related to parse tree’s size
@ can be built alongside parse tree

The dependency graph must be acyclic

Evaluation order:
o topological sort the dependency graph to order attributes
o using this order, evaluate the rules

The order depends on both the grammar and the input string

Syntax Directed Translation 14/29

Example (continued)

The attribute dependency graph:

SIGN (neg: T

Syntax Directed Translation 15/29

Example: A topological order

SIGN.neg
LISTy.pos
LIST,.pos
LIST,.pos
BITy.pos
BIT,.pos
BIT,.pos
BITy.val
LIST,.val
BIT,.val
LIST,.val
BIT,.val
LISTy.val
NUM.val

Evaluating in this order yields NUM.val: -5

POP0PEROPOEOEOO

Syntax Directed Translation 16/29

Evaluation strategies

o Parse-tree methods

@ build the parse tree

@ build the dependency graph
@ topological sort the graph
@ evaluate it

What if there are cycles?

Syntax Directed Translation

(dynamic)

(cyclic graph fails)

17/29

Avoiding cycles

o Hard to tell, for a given grammar, whether there exists any parse
tree whose dependency graphs have cycles.
o Focus on classes of SDD’s that guarantee an evaluation order —
do not permit dependency graphs with cycles.
o L-attributed — class of SDTs called “L-attributed translations”.
o S-attributed — class of SDTs called “S-attributed translations”.

Syntax Directed Translation 18/29

L-Attributed Grammars

Informally — allows both synthesized and inherited attributes, but
dependency-graph edges may only go from left to right, not other way
around.

Given production A — X1 X;--- X,

@ Synthesized attributes of A
o Inherited attributes of X; depend only on:

@ Inherited attributes of A
@ Arbitrary attributes of X;,X5,---X;_

i.e., evaluation order:
Inh(A), Inh(X;), Syn(X;), ..., Inh(X,), Syn(X,), Syn(A) This is precisely
the order of evaluation for an LL parser

Syntax Directed Translation 19/29

L-Attributed Grammar: Examples

PRODUCTION

SEMANTIC RULES

D — TL
T — int
T — real
L—)Ll,id

L — id

L.in := T .type

T .type := integer

T .type :=real
Li.in:= L.in
addtype(id.entry, L.in)
addtype(id.entry, L.in)

Syntax Directed Translation 20/29

L-Attributed Grammar: Examples

PRODUCTION

SEMANTIC RULES

NUM — SIGN LIST

SIGN — +
SIGN — -
LIST — BIT

LIST — LIST; BIT

BIT —o0
BIT —1

LIST.pos :=0
if SIGN.neg

NUM.val := -LIST.val
else

NUM.val := LIST.val
SIGN.neg := false
SIGN.neg := true
BIT.pos := LIST.pos
LIST.val := BIT.val
LIST,.pos := LIST.pos + 1
BIT.pos := LIST.pos
LIST.val := LIST,.val + BIT.val
BIT.val :=0
BIT.val := 2BITros

Syntax Directed Translation

21/29

Evaluating attributes of L-attributed grammar

o Perform depth-first traversal starting from the root of the parse

tree:

void depth-first (N) {
evaluate the inherited attributes of Nj;

for (each child C of N in left-to-right order)

do
depth-first (C);
done
evaluate the synthesized attributes of Nj;
}
@ Note that this order of visiting nodes corresponds to the exact
order in which top-down parser builds the parse tree.

o Thus, we can also evaluate L-attributed grammars in one
top-down (LL) pass.

Syntax Directed Translation 22/29

SDT for L-Attributed Grammars

o Embed the action which evaluates an attribute inside the body of
the production.

@ The action for evaluating an inherited attribute for X is placed
immediately before the occurrence of X in the body of the
production.

o The action for evaluating a synthesized attribute for A is placed
after the entire body of the production.

The SDT forA — X1 X,...X, is
A —{INH(X;) = }Xi{INH(Xp) = --- }X2.. . X, {SYN(A) = --- }

Syntax Directed Translation 23/29

S-attributed Grammars

o allows only synthesized attributes for non-terminals
o equivalently, semantic actions at far right of a RHS
Can evaluate S-attributed in one bottom-up (LR) pass.

Syntax Directed Translation

24/29

Evaluating attributes of S-attributed grammar

o Evaluate it in any bottom-up order of the nodes in the parse tree.
@ Apply postorder to the root of the parse tree:

void postorder (N) {

for (each child C of N)

do

postorder(C);

done

evaluate the attributes associated with N;j;

}

o Post order traversal of the parse tree corresponds to the exact
order in which the bottom-up parsing builds the parse tree.

@ Thus, we can evaluate S-attributed grammars in one bottom-up
(LR) pass.

Syntax Directed Translation 25/29

LL parsers and actions

How can we directly evaluate attributes in a L-attributed SDT during LL
parsing?

During LL Parsing, we expand productions before scanning RHS
symbols, so:

@ push actions onto parse stack like other grammar symbols
@ pop and perform action when it comes to top of parse stack

Syntax Directed Translation 26/29

LL parsers and actions

push EOF
push Start Symbol
token < next_token()

repeat
pop X
if X is a terminal or EOF then
if X = token then
token < next_token()
else error()
else if X is an action
perform X
else /* X is a non-terminal */
if M[X,token] = X — Y1 Y,---Y; then
pUSh Yk,Yk,],--- 7Y1
else error()
until X = EOF

The attribute values can be stored on the stack as well. For more details, refer to Dragon Book, Chapter 5, Section 5.5.3.

Syntax Directed Translation 27/29

LR parsers and actions

What about LR parsers?

In LR Parsing, we scan entire RHS before applying production, so:
@ cannot perform actions until entire RHS scanned
@ can only place actions at very end of RHS of production

@ introduce new marker non-terminals and corresponding
productions to get around this restriction

A — w action

becomes
A—MB

M — w action
For more details, refer to Dragon Book, Chapter 5, Section 5.5.4

Syntax Directed Translation 28/29

Inherited Vs Synthesised attributes

Synthesized attributes are limited

Inherited attributes (are good): derive values from constants, parents,
siblings

@ used to express context (context-sensitive checking)
@ inherited attributes are more “natural”

We want to use both kinds of attributes

@ can always rewrite L-attributed LL grammars (using markers) to
avoid inherited attribute problems with LR

Syntax Directed Translation 29/29

