
Introduction to Semantic Analysis

The Compiler so far

Lexical Analysis
Detects inputs with illegal tokens

Parsing
Detects inputs with ill-formed parse trees

Next: Semantic Analysis
Last ‘front-end’ phase
Catches all the remaining errors

Semantic Analysis 2 / 44

Semantic Analysis

The compilation process is driven by the syntactic structure of the
program as discovered by the parser

Semantic routines:
interpret (partial) meaning of the program based on its syntactic
structure
two purposes:

finish analysis by deriving context-sensitive information (e.g. type
checking)
begin synthesis by generating the IR or target code

Semantic Analysis 3 / 44

What does Semantic Analysis do?

Checks of many kinds:
All identifiers are declared.
Type checking in assignment statements, function calls,
expressions, etc.
Inheritance relationships.
Classes defined only once.
Methods in a class defined only once.
Reserved identifiers are not misused

And many others...

Semantic Analysis 4 / 44

Why a Separate Semantic Analysis?

Parsing cannot catch some errors. Some language constructs are not
context-free.

All identifiers are declared before use.
Corresponds to the abstract language {wcw | w,c ∈ {a,b}∗}.

The number of formal parameters in the declaration of a function
agrees with the number of actual parameters in the use of the
function.

Corresponds to the abstract language {anbmcndm}.
Here, an,bm represent the formal-parameter list of two functions,
while cn,dm represent the actual-parameter list in calls to the
functions.

These languages are not context-free.

Semantic Analysis 5 / 44

Scope

Matching identifier declarations with uses
One of the most important tasks performed by Semantic Analysis.

The scope of an identifier is the portion of a program in which that
identifier is accessible.
The same identifier may refer to different things in different parts
of the program.

Different scopes for same name don’t overlap.

An identifer may have restricted scope even if declared before use.

Semantic Analysis 6 / 44

Static vs. Dynamic Scope

Most languages have static scope.
Scope depends only on the program text, not run-time behavior.
C,C++,Java, etc. have static scope.

Example:

int x = 0;
{

y = x;
int x = 1;
z = x;

}

Uses of x refer to closest enclosing definition.

Semantic Analysis 7 / 44

Static vs. Dynamic Scope

Some languages have dynamic scope.
Scope depends on the execution of the program.

A dynamically scoped variable refers to the closest enclosing
binding in the execution of the program.

Lisp, SNOBOL have dynamic scoping for variables.

The exception handler for an exception is dynamically determined.
Object-oriented languages have limited dynamic scoping for
identifying method bindings.

Example of a language with dynamic scoping for variables:

a ← 0
g(y) = let a ← 4 in f();
h(z) = let a ← 5 in f();
f() = a;

Semantic Analysis 8 / 44

Symbol tables

For compile-time efficiency, compilers use a symbol table:
associates lexical names (symbols) with their attributes

What items belong to the symbol table?
variable names
defined constants
procedure and function names
source text labels
compiler-generated temporaries (we’ll get there)

A symbol table is a compile-time structure

Semantic Analysis 9 / 44

Symbol table information

What kind of information might the compiler need?
textual name
data type
declaring procedure
lexical level of declaration
storage class (base address)
offset in storage
can it be aliased? to what other names?
number and type of arguments to functions
. . .

Semantic Analysis 10 / 44

Storage classes of variables

Variables in the program may be assigned different storage classes
based on their lifetime, scope, where they live, etc.

Common storage classes are: global, stack, static, registers.

The storage classes also determine how the variables are addressed
(addressing mode).

A local variable is not assigned a fixed machine address (or
relative to the base of a module)
Rather a stack location that is accessed by an offset from a
register whose value may be different every time the procedure is
invoked.

Semantic Analysis 11 / 44

Symbol table organization

How should the table be organized?
Linear List

O(n) probes per lookup
easy to expand — no fixed size
one allocation per insertion

Ordered Linear List
O(log2 n) probes per lookup using binary search
insertion is expensive (to reorganize list)

Binary Tree
O(n) probes per lookup — unbalanced
O(log2 n) probes per lookup — balanced
easy to expand — no fixed size
one allocation per insertion

Hash Table
O(1) probes per lookup — on average
expansion costs vary with specific scheme

Semantic Analysis 12 / 44

Nested scopes: block-structured symbol tables

What information is needed?
when asking about a name, want most recent declaration
declaration may be from current scope or outer scope
innermost scope overrides outer scope declarations

Key point: new declarations occur only in current scope

Semantic Analysis 13 / 44

Nested scopes: block-structured symbol tables

What operations do we need?

void put (Symbol key, Object value)
bind key to value
Object get(Symbol key)
return value bound to key
void beginScope()
remember current state of table
void endScope()
close current scope and restore table to state at most recent open
beginScope

Semantic Analysis 14 / 44

Attribute information

Attributes are internal representation of declarations

Symbol table associates names with attributes

Names may have different attributes depending on their meaning:
variables: type, procedure level, frame offset
types: type descriptor, data size/alignment
constants: type, value
procedures: formals (names/types), result type, block information
(local decls.), frame size

Semantic Analysis 15 / 44

Types

What is a type?
A set of values.
A set of operations on those values.

Classes (e.g. in Java) are one instantiation of the modern notion
of type.

Semantic Analysis 16 / 44

Type system

Type systems is a logical system comprising of a set of rules that
assigns a property called a type to every term in the language.

Why do we need Type Systems?
Not all operations are legal for all types.
It makes sense to add two integers, but it doesn’t make any sense
to add a function pointer and an integer in C.
But both have the same assembly language implementation:
add $r1, $r2, $r3.

A language’s type system specifies which operations are valid for
which types.

The goal of Type Checking is to ensure that operations are used
with correct types.

Semantic Analysis 17 / 44

Type Checking Overview

Three kinds of languages:
Statically typed : All or almost all checking of types is done as part
of compilation (C, Java, OCaml, Rust, MiniJava).
Dynamically typed : Almost all checking of types is done as part of
program execution (Python,JavaScript,Scheme)
Untyped : No type checking (machine code)

Semantic Analysis 18 / 44

Static VS Dynamic Type Checking

Static checking catches many programming errors at compile time.
Static checking also avoids overhead of runtime type checks.

Dynamic type systems are more flexible than static type systems
– allow more programs to be executed.
Dynamically typed languages allow rapid prototyping, but may be
difficult to develop and maintain large code bases.

Recent trend: bolt-on static type checking on top of dynamically
typed languages.

See Hack (Meta, PHP), Flow (Meta, JavaScript), TypeScript
(Microsoft, JavaScript), Eqwalizer (WhatsApp, Erlang), Pyre (Meta,
Python).

This is a type war. There is no clear winner.

Semantic Analysis 19 / 44

Type Checking and Type Inference

Type Checking is the process of verifying fully typed programs.
Type Inference is the process of filling in missing type information.

The two are different, but the terms are often (incorrectly) used
interchangeably.

The formalism to express both type-checking and type-inference
is logical rules of inference.

Just like how the formal notation for lexical analysis and parsing
were regular expressions and context-free grammars respectively.

Semantic Analysis 20 / 44

Rules of Inference

Inference rules have the form:
If Hypothesis is true, then Conclusion is true.

Hypothesis is also called as antecedent
Conclusion is also called as consequent

We use the notation ⊢ e : T to denote that e has type T, and the
notation ⊢ e to denote that e type-checks.

Inference rules are often written as follows:
⊢ Hypothesis1 ⊢ Hypothesis2 . . . ⊢ Hypothesisn

⊢ Conclusion
This translates to: If Hypothesis1 and Hypothesis2 and . . .Hypothesisn
then Conclusion.

Inference rules are a very succinct way to precisely state
type-checking rules.

Semantic Analysis 21 / 44

Rules of Inference

⊢ E1 : T1 ⊢ E2 : T2
⊢ E3 : T3

For type inference, the rule is read as:
If E1 has type T1 and E2 has type T2 then E3 has type T3.

For type checking, the rule is read as:
If E1 with type T1 and E2 with type T2 type-check, then E3 also
type-checks with type T3.
We may sometimes omit T3 when type checking (statements, for
example).

Semantic Analysis 22 / 44

Examples

program contains int i

⊢ i : int
⊢ e1 : int ⊢ e2 : int
⊢ e1 + e2 : int

⊢ id : int ⊢ e : int
⊢ id = e

Semantic Analysis 23 / 44

Type Environment

A type environment is a mapping from identifiers to types.
We will use the symbol A to denote type environment.
dom(A) denotes the domain of A, i.e. the set of identifiers for which
types are defined in the environment A.
We use the notation A ⊢ id : T to denote that A(id) = T.

Semantic Analysis 24 / 44

Type expressions

Type expressions are a textual representation for types:
1 basic types: boolean, char, integer, real, etc.
2 type names
3 constructed types (constructors applied to type expressions):

1 array(I,T) denotes an array of T indexed over I
e.g., array(1 . . .10, integer)

2 products: T1×T2 denotes Cartesian product of type expressions T1
and T2

3 records: fields have names
e.g., record((a× integer),(b× real))

4 pointers: pointer(T) denotes the type “pointer to an object of type T”
5 functions: D→ R denotes the type of a function mapping domain

type D to range type R
e.g., integer× integer→ integer

In Minijava, the type expressions are boolean, int, int[], id.

Semantic Analysis 25 / 44

MiniJava Type Judgements

⊢ g The goal g type checks

⊢ mc The main class mc type checks

⊢ d The type declaration d type checks

C ⊢ m If defined under class C, the method m type checks

A,C ⊢ s In a type environment A, if written in class C,
the statement s type checks

A,C ⊢ e : t In a type environment A, if written in class C,
the expression e has type t

A,C ⊢ p : t In a type environment A, if written in class C,
the primary expression e has type t

Semantic Analysis 26 / 44

Typechecking a Minijava program

A program in Minijava consists of a main class (which contains the
main method) and a bunch of other classes.

Our goal is to typecheck all the classes:

distinct(classname(mc),classname(d1), . . . ,classname(dn))

⊢ mc ⊢ di, i ∈ {1, . . . ,n}
⊢ mc d1 . . .dn

This says that if all the class-names are distinct, and if all the classes
individually type-check, then the entire program also type-checks.

Ref: The MiniJava Type System, Jens Palsberg.
Semantic Analysis 27 / 44

Typechecking a Minijava class

distinct(id1, . . . , idf)

distinct(methodname(m1), . . . ,methodname(mk))

id ⊢ mi i ∈ {1, . . . ,k}
⊢ class id{t1 id1; . . . ; tf idf ; m1 . . .mk}

id ⊢ mi indicates that method mi type-checks under a type-environment
consisting of fields of class id.

Question: Does this allow a method and a field to have the same
name?

Ref: The MiniJava Type System, Jens Palsberg.
Semantic Analysis 28 / 44

“fields” helper function

Semantic Analysis 29 / 44

Typechecking a Minijava method

distinct(idF
1 , . . . , id

F
n)

distinct(id1, . . . , idr)

A = fields(C) · [idF
1 : tF

1 , . . . id
F
n : tF

n] · [id1 : t1, . . . idr : tr]

A,C ⊢ si, i ∈ {1, . . . ,q} A,C ⊢ e : t

C ⊢ public t idM (tF
1 idF

1 , . . . , tF
n idF

n){
t1 id1; . . . ; tr idr; s1 . . .sq; return e;}

Question:
Does this allow a formal parameter and a local variable to have
the same name?

What will be its type?

Does this allow a local variable and a field to have the same
name?

Ref: The MiniJava Type System, Jens Palsberg.
Semantic Analysis 30 / 44

Inheritance in Minijava

To express inheritance among classes, we will define the subtype
relation, denoted by ≤.

t1 ≤ t2 iff t1 is a sub-class of t2.

The following rules describe the subtype relation:

t ≤ t

t1 ≤ t2 t2 ≤ t3
t1 ≤ t3

class C extends D is in the program
C ≤ D

Semantic Analysis 31 / 44

Typechecking statements in Minijava

7.4 Type Declarations

d istinct(id1, . . . , idf)
d istinct(methodname(m1), . . . ,methodname(mk))
id ` mi i 2 1..k

` class id { t1 id1; ...; tf idf; m1 ... mk } (19)

d istinct(id1, . . . , idf)
d istinct(methodname(m1), . . . ,methodname(mk))
noOverloading(id, idP ,methodname(mi)) id ` mi i 2 1..k

` class id extends idP { t1 id1; ...; tf idf; m1 ... mk } (20)

7.5 Method Declarations

d istinct(idF
1 , . . . , idF

n)
d istinct(id1, . . . , idr)
A = f ields(C) · [idF

1 : tF1 , . . . , idF
n : tFn] · [id1 : t1, . . . , idr : tr]

A, C ` si i 2 1..q A, C ` e : t

C ` public t idM (tF1 idF
1 , ..., tFn idF

n) {t1 id1; ...; tr idr; s1 ... sq return e; } (21)

7.6 Statements

A, C ` si i 2 1..q

A, C ` { s1 ... sq } (22)

A(id) = t1 A, C ` e : t2 t2 t1
A, C ` id = e;

(23)

A(id) = int[] A, C ` e1 : int A, C ` e2 : int

A, C ` id [e1] = e2;
(24)

A, C ` e : boolean A, C ` s1 A, C ` s2

A, C ` if (e) s1 else s2
(25)

A, C ` e : boolean A, C ` s

A, C ` while (e) s
(26)

A, C ` e : int

A, C ` System.out.println(e);
(27)

6

Ref: The MiniJava Type System, Jens Palsberg.
Semantic Analysis 32 / 44

Typechecking expressions in Minijava7.7 Expressions and Primary Expressions

A, C ` p1 : boolean A, C ` p2 : boolean

A, C ` p1 && p2 : boolean
(28)

A, C ` p1 : int A, C ` p2 : int

A, C ` p1 < p2 : boolean
(29)

A, C ` p1 : int A, C ` p2 : int

A, C ` p1 + p2 : int
(30)

A, C ` p1 : int A, C ` p2 : int

A, C ` p1 - p2 : int
(31)

A, C ` p1 : int A, C ` p2 : int

A, C ` p1 * p2 : int
(32)

A, C ` p1 : int[] A, C ` p2 : int

A, C ` p1 [p2] : int
(33)

A, C ` p : int[]

A, C ` p .length : int
(34)

A, C ` p : D methodtype(D, id) = (t01, . . . , t
0
n)! t

A, C ` ei : ti ti t0i i 2 1..n

A, C ` p .id (e1, ..., en) : t
(35)

A, C ` c : int (36)

A, C ` true : boolean (37)

A, C ` false : boolean (38)

id 2 dom(A)

A, C ` id : A(id)
(39)

C 6= ?
A, C ` this : C

(40)

A, C ` e : int

A, C ` new int[e] : int[]
(41)

A, C ` new id() : id (42)

A, C ` e : boolean

A, C ` !e : boolean
(43)

A, C ` e : t

A, C ` (e) : t
(44)

7

Semantic Analysis 33 / 44

Typechecking method calls in Minijava

???

A,C ⊢ p.id(e1,e2, . . . ,en) : t

Semantic Analysis 34 / 44

Typechecking method calls in Minijava

A,C ⊢ p : D methodtype(D, id) = (t
′
1, . . . , t

′
n)→ t

A,C ⊢ ei : ti ti ≤ t
′
i, i ∈ {1, . . . ,n}

A,C ⊢ p.id(e1,e2, . . . ,en) : t

methodtype(D, id) returns the type of the method id in class D or one of
its super-classes.

Question: What change should we make in the rule if we want to
enforce access modifiers?

Semantic Analysis 35 / 44

Typechecking method calls in Minijava with access
modifiers

A,C ⊢ p : D methodtype(D, id) = (t
′
1, . . . , t

′
n)→ t

(methodaccess(D, id) = public

∨ methodaccess(D, id) = protected ∧ C ≤ D

∨ methodaccess(D, id) = private ∧ C = D)

A,C ⊢ ei : ti ti ≤ t
′
i i ∈ {1, . . . ,n}

A,C ⊢ p.id (e1,e2, . . . ,en) : t

methodtype(D, id) returns the type of the method id in class D or one of
its super-classes.

methodaccess(D, id) returns the access modifier of the method id in
class D or one of its super-classes.

Semantic Analysis 36 / 44

Typechecking ternary operation in Minijava

???

A,C ⊢ (e1?e2 : e3) : t

Semantic Analysis 37 / 44

Typechecking ternary operation in Minijava

A,C ⊢ e1 : boolean A,C ⊢ e2 : t A,C ⊢ e3 : t
A,C ⊢ (e1?e2 : e3) : t

But what about inheritance? How to handle subtyping?

Semantic Analysis 38 / 44

Example

...
class B extends A {...}
class C extends B {...}
class D extends B {...}
...
A objA; B objB; C objC; D objD;
...
objA = (...) ? objC : objD;
objB = (...) ? objC : objD;

Both the instances of ternary statement should type-check. This
requires the ternary statement itself to have the type B.

Semantic Analysis 39 / 44

Least Upper Bounds

lub(C,D), the least upper bound of classes C and D is defined to
class E such that

1 C ≤ E and D≤ E: E is an upper bound of both C and D
2 ∀E′. C ≤ E′∧D≤ E′⇒ E ≤ E′: E is least among upper bounds.

In Minijava, the least upper bound of two classes is their least
common ancestor in the inheritance tree.

Semantic Analysis 40 / 44

Typechecking ternary operation in Minijava: Attempt-2

A,C ⊢ e1 : boolean A,C ⊢ e2 : t1 A,C ⊢ e3 : t2
∃t′. t1 ≤ t′∧ t2 ≤ t′ t = lub(t1, t2)

A,C ⊢ (e1?e2 : e3) : t

Semantic Analysis 41 / 44

Typechecking No-overloading in Minijava

Overloading: A method is said to be overloaded if there exists
another method in the same class or its super classes with the
same name but different type.
Overriding: A method in a class is said to be overridden if there
exists a method in its subclass with the same name and type.

distinct(id1, . . . , idf)

distinct(methodname(m1), . . . ,methodname(mk))

id ⊢ mi, i ∈ {1, . . . ,k}
???

⊢ class id extends idP{t1 id1; . . . ; tf idf ; m1 . . .mk}

Semantic Analysis 42 / 44

Typechecking No-overloading in Minijava

distinct(id1, . . . , idf)

distinct(methodname(m1), . . . ,methodname(mk))

id ⊢ mi, i ∈ {1, . . . ,k}
methodtype(mi, idP) ̸=⊥⇒ methodtype(mi, idP) = methodtype(mi, id)

∧ methodaccess(mi, idP) = methodaccess(mi, id), i ∈ {1, . . . ,k}
⊢ class id extends idP{t1 id1; . . . ; tf idf ; m1 . . .mk}

methodtype(D, id) returns
the type of the method id in class D or one of its super-classes.
⊥ if the method id is not defined in class D or one of its
super-classes.

Semantic Analysis 43 / 44

Soundness of a Type System

A type system is sound if whenever ⊢ e : T, then e will always
evaluate to a value of type T in all executions.
We want only sound rules, because then we can give a
compile-time guarantee for the absence of type errors.

Example of an unsound rule?

⊢ e1 : int ⊢ e2 : int
⊢ e1 + e2 : int[]

A programming language is called type safe if a compiler of the
language guarantees that compiled programs will run without type
errors.

Can be either statically or dynamically typed.

Semantic Analysis 44 / 44

