CS3300 - Compiler Design Bottom-up Parsing

KC Sivaramakrishnan

IIT Madras

Some definitions

Recall

- For a grammar G, with start symbol S, any string α such that $S \Rightarrow^{*} \alpha$ is called a sentential form
- If $\alpha \in V_{t}^{*}$, then α is called a sentence in $L(G)$

A left-sentential form is a sentential form that occurs in the leftmost derivation of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost derivation of some sentence.

An unambiguous grammar will have a unique leftmost/rightmost derivation.

Bottom-up parsing

Consider:

$$
\begin{aligned}
& E \rightarrow E+T|E-T| T \\
& T \rightarrow T * F|T / F| F \\
& F \rightarrow \text { num } \mid \text { id }
\end{aligned}
$$

Goal:
Given an input string w and a grammar G, construct a parse tree by starting at the leaves and working to the root.
id $*$ id

Reductions

Reduction:

- At each reduction step, a specific substring matching the body of a production is replaced by the non-terminal at the head of the production.

Key decisions

- When to reduce?
- What production rule to apply?

Reductions VS Derivations

- Recall: In derivation: a non-terminal in a sentential form is replaced by the body of one of its productions.
- A reduction is reverse of a step in derivation.
- Bottom-up parsing is the process of "reducing" a string w to the start symbol.
- Goal of bottom-up parsing: build derivation tree in reverse.

Example

Consider the grammar

and the input string ab.bcde
The Reduction:

Prod'n.	Sentential Form
3	a b bocde
2	a Abc de
4	$a A \mathrm{de}$
1	$\mathrm{a} A B \mathrm{e}$
-	S

Rightmost Derivation:

$$
\begin{aligned}
S & \Rightarrow \mathrm{a} A B \mathrm{e} \\
& \Rightarrow \mathrm{a} A \mathrm{de} \\
& \Rightarrow \mathrm{a} A \mathrm{bcde} \\
& \Rightarrow \text { ab.bcde }
\end{aligned}
$$

Notice that the reduction is actually reverse of the rightmost derivation.

Another Example

$E \Rightarrow T \Rightarrow T * F \Rightarrow T * \mathrm{id} \Rightarrow F * \mathrm{id} \Rightarrow \mathrm{id} * \mathrm{id}$

Bottom-up Parsing and Rightmost Derivations

A bottom-up parser traces a rightmost derivation in reverse.

Consequence of this fact:

- Suppose $\alpha \beta \omega$ is a step of a bottom-up parse.
- Assume that the next reduction is by $X \rightarrow \beta$
- Then, what can we say about ω ?
- ω must consist of only terminal symbols.
- $\alpha X \omega \Rightarrow \alpha \beta \omega$ is a step in a rightmost derivation.

Handles

Informally, a "handle" is

- a substring that matches the body of a production (not necessarily the first such substring),
- and reducing this handle, represents one step of reduction (or reverse rightmost derivation).

The handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

Handle-pruning

The process to construct a bottom-up parse is called handle-pruning. To construct a rightmost derivation in reverse

$$
S=\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n}=w
$$

we apply the following simple algorithm

$$
\text { for } i=n \text { downto } 1
$$

(1) find the handle $A_{i} \rightarrow \beta_{i}$ in γ_{i}
(2) replace β_{i} with A_{i} to generate γ_{i-1}

How to find handles?

- We know that all symbols to the right of a handle must be terminal symbols.
- Idea: Split the string into two substrings
- Right substring is as yet unexamined by parsing (a string of terminals)
- Left substring has terminals and non-terminals
- The dividing point is marked by a
- | is not part of the string
- Initially, all input is unexamined $\mid x_{1} x_{2} \ldots x_{n}$.

Bottom-up Parsing

Bottom-up parsing uses only two kinds of actions:

- Shift: Move | one place to the right.
- That is, shift a terminal to the left substring.
- $\alpha|a w \rightsquigarrow \alpha a| w$
- Reduce: Apply an inverse production to the right end of the left sub-string.
- If $A \rightarrow \gamma$ is a production, then $\alpha \gamma|w \rightsquigarrow \alpha A| w$

Bottom-up parsing is also called Shift-Reduce Parsing.

Shift-Reduce Parsing: Example 1

$\mid i d * i d$
$i d \mid * i d$
$F \mid \star$ id
$T \mid * i d$
$T * i d \mid$
$T * F \mid$
$T \mid$
$E \mid$

Shift
Reduce by $F \rightarrow$ id
Reduce by $T \rightarrow F$
Shift
Reduce by $F \rightarrow$ id
Reduce by $T \rightarrow T \star F$
Reduce by $E \rightarrow T$

Shift-Reduce Parsing: Example 2

$$
\begin{array}{l|lll}
1 & S & \rightarrow & \mathrm{a} A B e \\
2 & A & \rightarrow & A b c \\
3 & & \mid & \mathrm{b} \\
4 & B & \rightarrow & \mathrm{~d}
\end{array}
$$

| abbcde ab | bcde a $A \mid$ bcde a A bc \mid de a $A \mid$ de a $A \mathrm{~d} \mid \mathrm{e}$ a $A B \mid e$ a $A B$ e| $S \mid$

Shift
Reduce by $A \rightarrow$ b
Shift
Reduce by $A \rightarrow A$ bc
Shift
Reduce by $B \rightarrow \mathrm{~d}$
Shift
Redece by $S \rightarrow \mathrm{a} A B \mathrm{e}$

Stack implementation

We can implement the division into left and right sub-strings using a stack.

- Top of the stack will be the marker | (implicitly).
- Shift-reduce parsers use a stack and an input buffer
(1) initialize stack with \$
(2) Repeat until the top of the stack is the goal symbol and the input token is \$
a) find the handle
if we don't have a handle on top of the stack, shift an input symbol
onto the stack
b) prune the handle
if we have a handle $A \rightarrow \beta$ on the top of the stack, reduce
i) pop | $\beta \mid$ symbols off the stack
ii) push A onto the stack

Example：Parsing $x-2 * y$

Stack	Input	Action
\＄		
\＄〈id＞	$-\langle$ num \rangle＊$\langle\mathrm{id}\rangle$	R9
\＄／factor＞	$-\langle$ num $\rangle *\langle\mathrm{id}\rangle$	R7
\＄ term＞	$-\left\langle\right.$ num ${ }^{\text {－}}$－id \rangle	R4
\＄$\overline{\text { expr }}$	$-\langle$ num $\rangle *\langle\mathrm{id}\rangle$	S
\＄ expr $^{\text {c }}$－	$\langle\mathrm{num}\rangle$＊$\langle\mathrm{id}\rangle$	S
\＄\langle expr \rangle－\langle num \rangle	＊〈id \rangle	R8
\＄\langle expr \rangle－\langle factor \rangle	＊〈id \rangle	R7
\＄\langle expr $\rangle-\overline{\text { term }}\rangle$	＊〈id ${ }^{\text {d }}$	S
\＄ expr －$^{\text {－}}$ term $\rangle *$	〈id）	S
\＄ expr $\rangle-\langle$ term $\rangle *\langle\mathrm{id}\rangle$		R9
\＄\langle expr $\rangle-\langle$ term $\rangle * \overline{\text { factor }}\rangle$		R5
\＄\langle expr $\rangle-\langle$ term \rangle		R3
\＄ （expr＞		R1
\＄$\overline{\text { goal }}$ ¢		A

Example：Rightmost derivation of $\mathrm{x}-2 * \mathrm{y}$

The left－recursive expression grammar

Prod＇n．	Sentential Form
－	＜goal〉
1	〈expr＞
3	$\overline{\langle\text { expr }\rangle}-\langle$ term \rangle
5	$\overline{\langle\text { expr }\rangle-\langle\text { term }\rangle} *\langle$ factor \rangle
9	$\langle\mathrm{expr}\rangle-\langle$ term $\rangle *\langle\mathrm{id}\rangle$
7	$\langle\mathrm{expr}\rangle-\langle$ factor $\rangle * \overline{\mathrm{id}}\rangle$
8	$\langle\mathrm{expr}\rangle-\overline{\langle\text { num }\rangle} *\langle\mathrm{id}\rangle$
4	\langle 戓erm $\rangle-\overline{\langle\text { num }\rangle} *\langle\mathrm{id}\rangle$
7	$\overline{\langle\text { factor }\rangle}-\langle$ num $\rangle *\langle\mathrm{id}\rangle$
9	$\underline{\langle\underline{i d}\rangle}-\langle$ num $\rangle *\langle\mathrm{id}\rangle$

Handle position

In shift-reduce parsing, handles will appear only at the top of the stack.

Proof.

The two successive steps in a rightmost derivation will be of the form:
(1) $S \stackrel{r m}{\Rightarrow} \alpha A z \stackrel{r m}{\Rightarrow} \alpha \beta B y z \stackrel{r m}{\Rightarrow} \alpha \beta \gamma y z$ (for $A \rightarrow \beta B y$ and $B \rightarrow \gamma$)
(2) $S \stackrel{r m}{\Rightarrow} \alpha B x A z \stackrel{r m}{\Longrightarrow} \alpha B x y z \stackrel{r m}{\Rightarrow} \alpha \gamma x y z$ (for $A \rightarrow y$ and $B \rightarrow \gamma$)
where x, y, z string of terminals. A is the right-most non-terminal in both cases.

Case 1:

Stack	Input	Action
$\$ \alpha \beta \gamma$	$y z \$$	R
$\$ \alpha \beta B$	$y z \$$	S
$\$ \alpha \beta B y$	$z \$$	R
$\$ \alpha A$	$z \$$	

Case 2:

STACK	InPUT	Action
$\$ \alpha \gamma$	$x y z \$$	R
$\$ \alpha B$	$x y z \$$	S
$\$ \alpha B x y$	$z \$$	R
$\$ \alpha B x A$	$z \$$	

When to shift and when to reduce?

Consider:

$$
\begin{aligned}
& E \rightarrow E+T|E-T| T \\
& T \rightarrow T * F|T / F| F \\
& F \rightarrow \text { num } \mid \text { id }
\end{aligned}
$$

- We know that the handle will appear on the top of the stack.
- But we still don't know when to shift and when to reduce.
- For example, while parsing id*id, at the stage $T \mid * i d$, we should not reduce using $E \rightarrow T$.
- Intuitively, this is because $E *$ is never a prefix of a right-sentential form in the grammar.

Viable Prefix

- α is a viable prefix if there is an ω such that $\alpha \mid \omega$ is a state of a shift-reduce parser.
- A viable prefix does not extend past the right end of the handle.
- The suffix of a viable prefix either is a handle, or it can be expanded into a handle by shifting.

Not all prefixes right-sentential forms are viable prefixes. Consider:

$$
E \stackrel{r m}{\Rightarrow} T \stackrel{r m}{\Rightarrow} T * F \stackrel{r m}{\Rightarrow} T * \mathrm{id} \stackrel{r m}{\Rightarrow} F * \mathrm{id} \stackrel{r m}{\Longrightarrow} \mathrm{id} * \mathrm{id}
$$

- While id * is a prefix of right-sential form, it is not a viable prefix as it does not appear on the shift-reduce stack.
- It extends past the handle id.

Important fact about viable prefixes

For any grammar, the set of viable prefixes is a regular language.

- We show how to compute an automata that accepts viable prefixes.
- Such an automata can help automate shift-reduce decisions.
- If the automata permits a transition on a symbol to another valid state (another viable prefix), I can shift as I can eventually find a handle.
- Otherwise, I will have to reduce.

Items

We shall use the concept of items to help build the automata that recognizes viable prefixes.
An item is a production with a \bullet somewhere on the RHS, denoting a focus point.
The • indicates how much of an item we have seen at a given state in the parse:
[$A \rightarrow \bullet X Y Z$] indicates that the parser is looking for a string that can be derived from $X Y Z$
[$A \rightarrow X Y \bullet Z]$ indicates that the parser has seen a string derived from $X Y$ and is looking for one derivable from Z
$A \rightarrow X Y Z$ generates 4 items:
(1) $[A \rightarrow \bullet X Y Z]$
(2) $[A \rightarrow X \bullet Y Z]$
(3) $[A \rightarrow X Y \bullet Z]$
(4) $[A \rightarrow X Y Z \bullet]$

Intuition

- The problem in recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions.
- If it had a complete rhs, we could reduce
- These bits and pieces are always prefixes of RHS of productions.

Example1

Consider:

$$
\begin{aligned}
& E \rightarrow E+T|E-T| T \\
& T \rightarrow T * F|T / F| F \\
& F \rightarrow \text { num } \mid \text { id }
\end{aligned}
$$

- Consider the string id+id*id.
- $E+T * \mid$ id is a state of shift-reduce parse.
- From the top of the stack:
- $T *$ is a prefix of $T \rightarrow T * F$
- $E+$ is a prefix of $E \rightarrow E+T$
- We can consider the stack to contain a stack of items. From the top:
- $T \rightarrow T * \bullet F$ - we've seen $T *$; hope to see F.
- $E \rightarrow E+\bullet T$ - we've seen $E+$; hope to see T.

Example2

Consider:

$$
\begin{aligned}
& E \rightarrow E+T|E-T| T \\
& T \rightarrow T * F|T / F| F \\
& F \rightarrow \text { num } \mid \text { id }
\end{aligned}
$$

Consider the string id*id. While parsing, consider the state $T * \mid$ id.

- $T *$ is a prefix of the RHS of $T \rightarrow T * F$.
- The corresponding item would be $T \rightarrow T * \bullet F$.
- ε is a prefix of the RHS of $E \rightarrow T$.
- The corresponding item would be $E \rightarrow \bullet T$.

The stack can be considered to contain those two items.

Generalization

- In general, the stack may have many prefixes of RHSs:

Prefix Prefix $_{2}$... Prefix

- Let Prefix ${ }_{i}$ be a prefix of RHS of $X_{i} \rightarrow \alpha_{i}$.
- Prefix x_{i} will eventually reduce to X_{i}.
- The missing part of α_{i-1} starts with X_{i}, i.e. there is a production $X_{i-1} \rightarrow$ Prefix $_{i-1} X_{i} \beta$ for some β.
- Recursively, Prefix ${ }_{k+1} \ldots$ Prefix $_{n}$ eventually reduces to the missing part of α_{k}.

Recognizing Viable Prefixes

Idea: To recognize viable prefixes, we must
(1) Recognize a sequence of partial RHS's of productions, such that
(2) Each partial RHS can eventually reduce to part of the missing suffix of its predecessor in the sequence.

An NFA recognizing Viable Prefixes

(1) Add a new start production $S^{\prime} \rightarrow S$ to the grammar.
(2) The NFA states are the items of the grammar.

- The start state will be $S^{\prime} \rightarrow \bullet S$
(3) For item $E \rightarrow \alpha \bullet X \beta$, add transition $E \rightarrow \alpha \bullet X \beta \stackrel{X}{\rightsquigarrow} E \rightarrow \alpha X \bullet \beta$.
(4) For item $E \rightarrow \alpha \bullet X \beta$ and production $X \rightarrow \gamma$, add transition $E \rightarrow \alpha \bullet X \beta \stackrel{\varepsilon}{\rightsquigarrow} X \rightarrow \bullet \gamma$.
(5) Every state is an accepting state.

Example

Grammer G :

1	S	\rightarrow	E
2	E	\rightarrow	$E+T$
3		\mid	$E-T$
4		\mid	T
5	T	\rightarrow	$T * F$
6		\mid	T / F
7		\mid	F
8	F	\rightarrow	\langle num \rangle
9			
	id \rangle		

Portion of the NFA for recognizing viable prefixes of G.

Recall: Shift-Reduce Parsing id*id

$\mid i d \star i d$
$i d \mid \star$ id
$F \mid \star$ id
$T \mid \star$ id
$T \star$ id \mid
$T \star F \mid$
$T \mid$
$E \mid$

Shift
Reduce by $F \rightarrow$ id
Reduce by $T \rightarrow F$
Shift
Reduce by $F \rightarrow$ id
Reduce by $T \rightarrow T \star F$
Reduce by $E \rightarrow T$

Recall: Shift-Reduce Parsing id*id

The NFA recognizes all the viable prefixes encountered during the parse.

DFA for recognizing viable prefixes

- We can convert the NFA to a DFA.
- Each state will now be a set of items.
- Transitions will be on a grammar symbol.
- The states of this DFA are called "canonical collection of items" or "canonical collection of $\operatorname{LR}(0)$ items".
- Each item that we have described so far is also called a LR(0) item.
- The Dragon Book defines procedures CLOSURE and GOTO to directly generate the DFA.
- This DFA is also sometimes called the Characteristic Finite State Machine (CFSM) of the grammar.

CLOSURE

Let I be a set of $\mathrm{LR}(0)$ items.

```
function CLOSURE(I)
repeat
    if [A->\alpha\bulletB\beta]\inI
        add [B->\bullet\gamma] to I
until no more items can be added to I
return I
```

Note that this is nothing but the ε-closure of states in the NFA.

GOTO

Let I be a set of $\mathrm{LR}(0)$ items and X be a grammar symbol. Then, $\operatorname{GOTO}(I, X)$ is the closure of the set of all items

$$
[A \rightarrow \alpha X \bullet \beta] \text { such that }[A \rightarrow \alpha \bullet X \beta] \in I
$$

GOTO (I, X) represents state after recognizing X in state I.

$$
\begin{aligned}
& \text { function } \operatorname{GOTO}(I, X) \\
& \text { let } J \text { be the set of items }[A \rightarrow \alpha X \bullet \beta] \\
& \text { such that }[A \rightarrow \alpha \bullet X \beta] \in I \\
& \text { return CLOSURE }(J)
\end{aligned}
$$

Building the $L R(0)$ item sets

We start the construction with the item $\left[S^{\prime} \rightarrow \bullet S \$\right]$, where
S^{\prime} is the start symbol of the augmented grammar G^{\prime}
S is the start symbol of G
\$ represents EOF
To compute the collection of sets of $\mathrm{LR}(0)$ items

```
function items( }\mp@subsup{G}{}{\prime}\mathrm{ )
    s
    C\leftarrow{s, }
    repeat
        for each set of items s\inC
            for each grammar symbol }
            if GOTO}(s,X)\not=\phi and GOTO(s,X)\not\in
                add GOTO(s,X) to C
    until no more item sets can be added to }
    return C
```


LR(0): Example

The corresponding DFA:

$$
\begin{array}{cc}
I_{0}: S \rightarrow \bullet E \$ & I_{4}: E \rightarrow E+T \bullet \\
E \rightarrow \bullet E+T & I_{5}: T \rightarrow\langle\mathrm{id}\rangle \bullet \\
E \rightarrow \bullet T & I_{6}: T \rightarrow(\bullet E) \\
T \rightarrow \bullet\langle\mathrm{id}\rangle & E \rightarrow \bullet E+T \\
T \rightarrow(E) & E \rightarrow T \\
I_{1}: S \rightarrow E \bullet \$ & T \rightarrow \bullet\langle\mathrm{id}\rangle \\
E \rightarrow E \bullet+T & T \rightarrow \bullet(E) \\
I_{2}: S \rightarrow E \$ \bullet & I_{7}: T \rightarrow(E \bullet) \\
I_{3}: E \rightarrow E+\bullet T & E \rightarrow E \bullet+T \\
T \rightarrow \bullet \mathrm{id}\rangle & I_{8}: T \rightarrow(E) \bullet \\
& T \rightarrow \bullet(E)
\end{array}
$$

Valid Items

- Item $X \rightarrow \beta \bullet \gamma$ is valid for a viable prefix $\alpha \beta$ if

$$
S \Rightarrow^{*} \alpha X \omega \Rightarrow \alpha \beta \gamma \omega
$$

by a right-most derivation.

- After parsing $\alpha \beta$, the valid items are the possible tops of the stack of items.
- Alternatively, an item I is valid for a viable prefix α if the DFA recognizing viable prefixes terminates on input α in a state s containing I.
- The items in s describe what the top of the item stack might be after reading input α.

Valid Items: Example

1	S	\rightarrow	$E \$$
2	E	\rightarrow	$E+T$
3		\mid	T
4	T	\rightarrow	$\langle\mathrm{id}\rangle$
5		\mid	(E)

$$
\begin{array}{cc}
I_{0}: S \rightarrow \bullet E \$ & I_{4}: E \rightarrow E+T \bullet \\
E \rightarrow \bullet E+T & I_{5}: T \rightarrow\langle\mathrm{id}\rangle \bullet \\
E \rightarrow \bullet T & I_{6}: T \rightarrow(\bullet E) \\
T \rightarrow \bullet\langle\mathrm{id}\rangle & E \rightarrow \bullet E+T \\
T \rightarrow(E) & E \rightarrow T \\
I_{1}: S \rightarrow E \bullet \$ & T \rightarrow \bullet\langle\mathrm{id}\rangle \\
E \rightarrow E \bullet+T & T \rightarrow \bullet(E) \\
I_{2}: S \rightarrow E \$ \bullet & I_{7}: T \rightarrow(E \bullet) \\
I_{3}: E \rightarrow E+\bullet T & E \rightarrow E \bullet+T \\
T \rightarrow \bullet \mathrm{id}\rangle & I_{8}: T \rightarrow(E) \bullet \\
& T \rightarrow \bullet E)
\end{array}
$$

The corresponding DFA:

$T \rightarrow(\bullet E)$ is a valid item for (. Also for
$E+(,((, E+(($.

Recall: Stack implementation of Shift-Reduce Parsing

Shift-reduce parsers use a stack and an input buffer
(1) initialize stack with \$
(2) Repeat until the top of the stack is the goal symbol and the input token is \$
a) find the handle
if we don't have a handle on top of the stack, shift an input symbol onto the stack
b) prune the handle
if we have a handle $A \rightarrow \beta$ on the top of the stack, reduce
i) pop | β | symbols off the stack
ii) push A onto the stack

Basic LR(0) Parsing

- Assume
- stack contains α
- next input symbol is a
- DFA on input α terminates in state s
- Shift if s contains the item $X \rightarrow \beta \bullet a \omega$.
- Equivalent to saying that state s has a transition labelled a.
- Reduce by $X \rightarrow \beta$ if s contains the item $X \rightarrow \beta \bullet$.
- That is, pop $|\beta|$ symbols from the stack and push X.
- Accept if the stack contains S and input token in \$.
- Report an error if no shift/reduce moves are possible.

Example: Parsing id + id

$\mid i d+i d \$$
$i d \mid+i d \$$
$T \mid+i d \$$
$E \mid+i d \$$
$E+\mid i d \$$
$E+i d \mid \$$
$E+T \mid \$$
$E \mid \$$
$E \$ \mid$

$$
\begin{array}{cc}
I_{0}: S \rightarrow \bullet E \$ & I_{4}: E \rightarrow E+T \bullet \\
E \rightarrow \bullet E+T & I_{5}: T \rightarrow\langle\mathrm{id}\rangle \bullet \\
E \rightarrow \bullet T & I_{6}: T \rightarrow(\bullet E) \\
T \rightarrow \bullet \text { id }\rangle & E \rightarrow \bullet E+T \\
T \rightarrow \bullet(E) & E \rightarrow \bullet T \\
I_{1}: S \rightarrow E \bullet \$ & T \rightarrow \bullet \bullet \mathrm{id}\rangle \\
E \rightarrow E \bullet+T & T \rightarrow \bullet E) \\
I_{2}: S \rightarrow E \$ \bullet & I_{7}: T \rightarrow(E \bullet) \\
I_{3}: E \rightarrow E+\bullet T & E \rightarrow E \bullet+T \\
T \rightarrow \bullet \text { id } & I_{8}: T \rightarrow(E) \bullet \\
T \rightarrow \bullet(E) & I_{9}: E \rightarrow T \bullet
\end{array}
$$

An Optimization

- Rerunning the automaton from the start state at each step is wasteful
- Much of the work is repeated.

Example: Repeated Work in Basic LR(0) Parsing

$\mid i d+i d \$$
$i d \mid+i d \$$
$T \mid+i d \$$
$E \mid+i d \$$
$E+\mid i d \$$
$E+i d \mid \$$
$E+T \mid \$$
$E \mid \$$
$E \$ \mid$

$$
\begin{array}{cc}
I_{0}: S \rightarrow \bullet E \$ & I_{4}: E \rightarrow E+T \bullet \\
E \rightarrow \bullet E+T & I_{5}: T \rightarrow\langle\mathrm{id}\rangle \bullet \\
E \rightarrow \bullet T & I_{6}: T \rightarrow(\bullet E) \\
T \rightarrow \bullet\langle\mathrm{id}\rangle & E \rightarrow \bullet E+T \\
T \rightarrow \bullet(E) & E \rightarrow \bullet T \\
I_{1}: S \rightarrow E \bullet \$ & T \rightarrow \bullet\langle\mathrm{id}\rangle \\
E \rightarrow E \bullet+T & T \rightarrow \bullet(E) \\
I_{2}: S \rightarrow E \$ \bullet & I_{7}: T \rightarrow(E \bullet) \\
I_{3}: E \rightarrow E+\bullet T & E \rightarrow E \bullet+T \\
T \rightarrow \bullet\langle\mathrm{id}\rangle & I_{8}: T \rightarrow(E) \bullet \\
T \rightarrow \bullet(E) & I_{9}: E \rightarrow T \bullet
\end{array}
$$

$$
\hat{\delta}(0, \varepsilon)=0
$$

$$
\hat{\delta}(0, i d)=5
$$

$$
\hat{\delta}(0, T)=9
$$

$$
\hat{\delta}(0, E)=1
$$

$$
\hat{\delta}(0, E+)=3
$$

$$
\hat{\delta}(0, E+i d)=5
$$

$$
\hat{\delta}(0, E+T)=4
$$

$$
\hat{\delta}(0, E)=1
$$

$$
\hat{\delta}(0, E \$)=2
$$

Shift id
Reduce $T \rightarrow$ id
Reduce $E \rightarrow T$
Shift +
Shift id
Reduce $T \rightarrow$ id
Reduce $E \rightarrow E+T$
Shift \$
Accept

An Optimization

- Rerunning the automaton from the start state at each step is wasteful
- Much of the work is repeated.
- Instead, we can remember the state of the automaton for each prefix of the stack.
- This state can be stored on the stack itself.
- In fact, we will only store states on the stack now.
- Optimized LR(0) parsing algorithm uses two tables: ACTION and GOTO.
- ACTION (i, a) is defined for every state i of the DFA and every terminal symbol a.
- $\operatorname{GOTO}(i, A)$ is defined for every state i of the DFA and every non-terminal symbol A.

Model of an LR Parser

Constructing the $\operatorname{LR}(0)$ parsing table

(1) construct the collection of sets of $\operatorname{LR}(0)$ items for the grammar
(2) state i of the DFA is constructed from I_{i}
(1) $[A \rightarrow \alpha \bullet a \beta] \in I_{i}$ and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$

$$
\Rightarrow \operatorname{ACTION}[i, a] \leftarrow " \text { shift } j ", \forall a \neq \$
$$

(2) $[A \rightarrow \alpha \bullet] \in I_{i}, A \neq S^{\prime}$
$\Rightarrow \mathrm{ACTION}[i, a] \leftarrow$ "reduce $A \rightarrow \alpha$ ", $\forall a$
(3) $\left[S^{\prime} \rightarrow S \bullet \$\right] \in I_{i}$
\Rightarrow ACTION $[i, \$] \leftarrow$ "accept",
(3) $\operatorname{GOTO}\left(I_{i}, A\right)=I_{j}$
$\Rightarrow \operatorname{GOTO}[i, A] \leftarrow j$
(4) set undefined entries in ACTION and GOTO to "error"
(5) initial state of parser s_{0} is CLOSURE $\left(\left[S^{\prime} \rightarrow \bullet S \$\right]\right)$

LR(0) Parsing Algorithm

The skeleton parser:

```
push so
token }\leftarrow\mathrm{ next_token()
repeat forever
    S \leftarrow top of stack
    if action[s,token] = "shift si" then
        push si
        token }\leftarrow next_token(
    else if action[s,token] = "reduce A->\beta"
        then
        pop | }\beta|\mathrm{ states
        s'}\leftarrow\mathrm{ top of stack
        push goto[s',A]
    else if action[s, token] = "accept" then
        return
    else error()
```

"How many ops?": k shifts, l reduces, and 1 accept, where k is length of input string and l is length of reverse rightmost derivation

LR(0) Parsing Table: Example

1	S	\rightarrow	$E \$$
2	E	\rightarrow	$E+T$
3		\mid	T
4	T	\rightarrow	$\langle\mathrm{id}\rangle$
5		\mid	(E)

The corresponding DFA:

$$
\begin{array}{cc}
I_{0}: S \rightarrow \bullet E \$ & I_{4}: E \rightarrow E+T \bullet \\
E \rightarrow \bullet E+T & I_{5}: T \rightarrow\langle\mathrm{id}\rangle \bullet \\
E \rightarrow \bullet T & I_{6}: T \rightarrow(\bullet E) \\
T \rightarrow \bullet\langle\mathrm{id}\rangle & E \rightarrow \bullet E+T \\
T \rightarrow(E) & E \rightarrow T \\
I_{1}: S \rightarrow E \bullet \$ & T \rightarrow \bullet\langle\mathrm{id}\rangle \\
E \rightarrow E \bullet+T & T \rightarrow \bullet(E) \\
I_{2}: S \rightarrow E \$ \bullet & I_{7}: T \rightarrow(E \bullet) \\
I_{3}: E \rightarrow E+\bullet T & E \rightarrow E \bullet+T \\
T \rightarrow \bullet \mathrm{id}\rangle & I_{8}: T \rightarrow(E) \bullet \\
& T \rightarrow \bullet(E)
\end{array}
$$

LR(0) Parsing Table: Example

state	ACTION	GOTO
	id () + \$	$S E T$
0	s5 s6 - -	9
1	- - - s3 acc	
2	_ _ - - -	
3	s5 s6 - - -	4
4	r2 r2 r2 r2 r2	-
5	r4 r4 r4 r4 r4	- -
6	s5 s6 - - -	-79
7	- - s8 s3	
8	r5 r5 r5 r5 r5	
9	r3 r3 r3 r3 r3	- -

LR Parsing Algorithm: Parsing id + id

	\rightarrow

Stack	Input
0	id $+i d \$$
05	$+i d \$$
09	$+i d \$$
01	$+i d \$$
013	id $\$$
0135	$\$$
0134	$\$$
01	$\$$

state	ACTION	GOTO
	id () + \$	SE T
0	s5 s6 - -	19
1	- - - s3 acc	-- -
2	- - - - -	-- -
3	s5 s6 - -	- 4
4	r2 r2 r2 r2 r2	-- -
5	r4 r4 r4 r4 r4	- -
6	s5 s6 - - -	-79
7	- - s8 s3	-
8	r5 r5 r5 r5 r5	
9	r3 r3 r3 r3 r3	-- -

LR(0) Conflicts

- LR(0) has a reduce/reduce conflict if any state has two reduce items: $X \rightarrow \alpha \bullet$ and $Y \rightarrow \beta \bullet$.
- Our running example of the simple expression grammar with just + and () does not have reduce-reduce conflicts.
- LR(0) has a shift/reduce conflict if any state has a reduce item and a shift item: $X \rightarrow \alpha \bullet$ and $Y \rightarrow \beta \bullet a \gamma$.
- Our running example of the simple expression grammar does not have shift/reduce conflicts as well.

Conflicts in the ACTION table

LR(0) conflicts will manifest in the ACTION table as multiple entries for some cell.
Conflicts can be resolved through lookahead. Consider:

- $A \rightarrow \varepsilon \mid a \alpha$
\Rightarrow shift-reduce conflict
- $\mathrm{a}:=\mathrm{b}+\mathrm{c} * \mathrm{~d}$
requires lookahead to avoid shift-reduce conflict after shifting c (need to see * to give precedence over +)

LR parsing with lookahead

Three common techniques to build LR parsers with lookahead:
(1) $\operatorname{SLR}(k)$

- smallest class of grammars
- smallest tables (number of states)
- simple, fast construction
(2) $\operatorname{LR}(\mathrm{k})$
- full set of LR(k) grammars
- largest tables (number of states)
- slow, large construction
(3) $\operatorname{LALR}(\mathrm{k})$
- intermediate class of grammars
- same number of states as $\operatorname{SLR}(\mathrm{k})$
- canonical construction is slow and large
- better construction techniques exist

Here k indicates the number of lookahead symbols
We will study $\operatorname{SLR}(1), \operatorname{LR}(1)$ and $\operatorname{LALR}(1)$.

Why study LR parsers?

- LR parsers can be constructed for virtually all context-free programming language constructs
- LR-parsing is the most general non-backtracking shift-reduce parsing method known. It is also one of the most efficient parsing methods.
- LR parsers detect an error as soon as possible in a left-to-right scan of the input
- LR grammars describe a proper superset of the languages recognized by predictive (i.e., LL) parsers
$\mathrm{LL}(k)$: recognize use of a production $A \rightarrow \beta$ seeing first k symbols derived from β
$\mathrm{LR}(k)$: recognize the handle β after seeing everything derived from β plus k lookahead symbols

Basic SLR(1) Parsing: Simple Lookahead LR

- Assume
- stack contains α
- next input symbol is a
- DFA on stack α terminates in state s
- Shift if s contains the item $X \rightarrow \beta \bullet a \omega$.
- Equivalent to saying that state s has a transition labelled a.
- Reduce by $X \rightarrow \beta$ if s contains the item $X \rightarrow \beta \bullet$ and $a \in \operatorname{FOLLOW}(X)$.
- That is, pop $|\beta|$ symbols from the stack and push X.
- Accept if the stack contains S and input token in \$.
- Report an error if no shift/reduce moves are possible.

What kind of conflicts are resolved with this trick?

Optimized SLR(1)

Add lookaheads after building $\operatorname{LR}(0)$ item sets
Constructing the SLR(1) parsing table:
(1) construct the collection of sets of $\operatorname{LR}(0)$ items for G^{\prime}
(2) state i of the DFA is constructed from the item set I_{i}
(1) $[A \rightarrow \alpha \bullet a \beta] \in I_{i}$ and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$

$$
\Rightarrow \operatorname{ACTION}[i, a] \leftarrow " \text { shift } j ", \forall a \neq \$
$$

(2) $[A \rightarrow \alpha \bullet] \in I_{i}, A \neq S^{\prime}$

$$
\Rightarrow \mathrm{ACTION}[i, a] \leftarrow \text { "reduce } A \rightarrow \alpha ", \forall a \in \operatorname{FOLLOW}(A)
$$

(3) $\left[S^{\prime} \rightarrow S \bullet \$\right] \in I_{i}$

$$
\Rightarrow \operatorname{ACTION}[i, \$] \leftarrow \text { "accept" }
$$

(3) $\operatorname{GOTO}\left(I_{i}, A\right)=I_{j}$

$$
\Rightarrow \operatorname{GOTO}[i, A] \leftarrow j
$$

(4) set undefined entries in ACTION and GOTO to "error"
(5) initial state of parser s_{0} is CLOSURE $\left(\left[S^{\prime} \rightarrow \bullet S \$\right]\right)$

Example: A grammar that is not $\mathrm{LR}(0)$

1	S	\rightarrow	$E \$$
2	E	\rightarrow	$E+T$
3		\mid	T
4	T	\rightarrow	$T * F$
5		\mid	F
6	F	\rightarrow	$\langle\mathrm{id}\rangle$
7	\mid		(E)
	FOLLOW		
E	+,$), \$$		
T	$+, *,), \$$		
F	$+, *,), \$$		

$I_{0}: S \rightarrow \bullet E \$$
$\xrightarrow[T]{ } \rightarrow \bullet \bullet * F$
$T \rightarrow \bullet$ ¢
$F \rightarrow \bullet$ id ${ }^{\text {d }}$ ¢
$F \rightarrow \bullet(E)$
$I_{1}: S \rightarrow E \bullet \$$
$E \rightarrow E \bullet+T$
$I_{2}: S \rightarrow E \$ \bullet$
$I_{3}: E \rightarrow E+\bullet T$
$\underset{T}{\rightarrow} \bullet$ ¢ $F *$
$F \rightarrow \bullet$ id \rangle
$F \rightarrow \bullet(E)$
$I_{4}: T \rightarrow F \bullet$
$I_{5}: F \rightarrow\langle\mathrm{id}\rangle \bullet$

Shift/Reduce Conflicts
What input string will lead you to the state I_{7} and I_{11} ?

Example: But it is $\operatorname{SLR}(1)$

state	ACTION						GOTO			
	+	$*$	id	()	$\$$	S	E	T	F
0	-	-	s5	s6	-	-	-	1	7	4
1	s3	-	-	-	-	acc	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-
3	-	-	s5	s6	-	-	-	-	11	4
4	r5	r5	-	-	r5	r5	-	-	-	-
5	r6	r6	-	-	r6	r6	-	-	-	-
6	-	-	s5	s6	-	-	-	12	7	4
7	r3	s8	-	-	r3	r3	-	-	-	-
8	-	-	s5	s6	-	-	-	-	-	9
9	r4	r4	-	-	r4	r4	-	-	-	-
10	r7	r7	-	-	r7	r7	-	-	-	-
11	r2	s8	-	-	r2	r2	-	-	-	-
12	s3	-	-	-	s10	-	-	-	-	-

Can you have reduce/reduce and shift/reduce conflicts with $\operatorname{SLR}(1)$?

Example: A grammar that is not $\operatorname{SLR}(1)$

Consider:

Its $\operatorname{LR}(0)$ item sets:

$$
\begin{array}{cc}
I_{0}: S^{\prime} \rightarrow \bullet S \$ & I_{5}: L \rightarrow * \bullet R \\
S \rightarrow \bullet L=R & R \rightarrow \bullet L \\
S \rightarrow \bullet R & L \rightarrow \bullet * R \\
L \rightarrow \bullet * R & L \rightarrow \bullet\langle\mathrm{id}\rangle \\
L \rightarrow \bullet \mathrm{id}\rangle & I_{6}: S \rightarrow L=\bullet R \\
R \rightarrow \bullet & R \rightarrow \bullet L \\
I_{1}: S^{\prime} \rightarrow S \bullet \$ & L \rightarrow \bullet R \\
I_{2}: S \rightarrow L \bullet=R & L \rightarrow \bullet\langle\mathrm{id}\rangle \\
R \rightarrow L \bullet & I_{7}: L \rightarrow * R \bullet \\
I_{3}: S \rightarrow R \bullet & I_{8}: R \rightarrow L \bullet \\
I_{4}: L \rightarrow\langle\mathrm{id}\rangle \bullet & I_{9}: S \rightarrow L=R \bullet
\end{array}
$$

Now consider $I_{2}:=\in \operatorname{FOLLOW}(R)(S \Rightarrow L=R \Rightarrow * R=R)$
I_{2} has a shift/reduce conflict.

Example: A grammar that is not $\operatorname{SLR}(1)$

Consider:

Its $\operatorname{LR}(0)$ item sets:

$$
\begin{array}{cc}
I_{0}: S^{\prime} \rightarrow \bullet S \$ & I_{5}: L \rightarrow * \bullet R \\
S \rightarrow \bullet L=R & R \rightarrow \bullet L \\
S \rightarrow \bullet R & L \rightarrow \bullet * R \\
L \rightarrow \bullet * R & L \rightarrow \bullet\langle\mathrm{id}\rangle \\
L \rightarrow \bullet \text { id }\rangle & I_{6}: S \rightarrow L=\bullet R \\
R & \rightarrow \bullet L \\
I_{1}: S^{\prime} \rightarrow S \bullet \$ & R \rightarrow \bullet L \\
I_{2}: S \rightarrow L \bullet=R & L \rightarrow \bullet R \\
R \rightarrow L \bullet & L \rightarrow \bullet\langle\mathrm{id}\rangle \\
I_{3}: S \rightarrow R \bullet & I_{7}: L \rightarrow * R \bullet \\
I_{4}: L \rightarrow\langle\mathrm{id}\rangle \bullet & I_{8}: R \rightarrow L \bullet \\
& I_{9}: S \rightarrow L=R \bullet
\end{array}
$$

While parsing $* i d=i d$, at the parse state $L \mid=i d$, the correct option is to shift.

Example: A grammar that is not $\operatorname{SLR}(1)$

Consider:

Its $\mathrm{LR}(0)$ item sets:

$$
\begin{array}{cc}
I_{0}: S^{\prime} \rightarrow \bullet S \$ & I_{5}: L \rightarrow * \bullet R \\
S \rightarrow \bullet L=R & R \rightarrow \bullet \\
S \rightarrow \bullet R & L \rightarrow \bullet * R \\
L \rightarrow \bullet * R & L \rightarrow \bullet\langle\mathrm{id}\rangle \\
L \rightarrow \bullet i \mathrm{id}\rangle & I_{6}: S \rightarrow L=\bullet R \\
R & \rightarrow \bullet L \\
I_{1}: S^{\prime} \rightarrow S \bullet \$ & R \rightarrow \bullet L \\
I_{2}: S \rightarrow L \bullet=R & L \rightarrow \bullet R \\
R & L \rightarrow L \bullet \\
I_{3}: S \rightarrow R \bullet & I_{7}: L \rightarrow * R \bullet \\
I_{4}: L \rightarrow\langle\mathrm{id}\rangle \bullet & I_{8}: R \rightarrow L \bullet \\
& I_{9}: S \rightarrow L=R \bullet
\end{array}
$$

While parsing id, at the parse state $L \mid$, the correct option is to reduce by $R \rightarrow L$.
Note that this is the only string where reduce is the correct option for item-set I_{2}.

$\mathrm{LR}(k)$ items

$\mathrm{A} \operatorname{LR}(k)$ item is a pair $[\alpha, \beta]$, where
α is a production from G with a \bullet at some position in the RHS, marking how much of the RHS of a production has already been seen
β is a lookahead string containing k symbols (terminals or \$)
$\operatorname{ALR}(k)$ item $[A \rightarrow \alpha \bullet \beta, w]$ is valid for a viable prefix $\gamma \alpha$ iff

- there exists a rightmost derivation $S \Rightarrow_{r m}^{*} \gamma A x \Rightarrow_{r m} \gamma \alpha \beta x$ and
- $x=w w^{\prime}$ (or) x is ε and w is $\$$.

LR(1) items

Will have the general form $[A \rightarrow \alpha \bullet \beta, a]$. What's the point of the lookahead symbols?

Choose correct reduction when there is a choice

- lookaheads are bookkeeping, unless item has • at right end:
- in $[A \rightarrow X \bullet Y Z, a], a$ has no direct use
- in $[A \rightarrow X Y Z \bullet, a], a$ is useful
- For item $[A \rightarrow X Y Z \bullet, a]$, we will reduce only if the next input symbol is a.

closure1(I)

```
function closure1(I)
repeat
    if }[A->\alpha\bulletB\beta,a]\in
        add [B->\bullet\gamma,b] to I, where b\in\operatorname{FIRST}(\betaa)
until no more items can be added to I
return I
```


Intuition:

- If $[A \rightarrow \alpha \bullet B \beta, a]$ is a valid item for viable prefix $\delta \alpha$, then $S \xrightarrow{r m}{ }^{*} \delta A a x \stackrel{r m}{\Longrightarrow} \delta \alpha B \beta a x$.
- Suppose β ax derives by. Then, for each of the productions of the form $B \rightarrow \gamma$, we have a derivation $S \stackrel{r m}{\Rightarrow} \delta \alpha B b y \stackrel{r m}{\Rightarrow} \delta \alpha \gamma b y$.
- This would imply that $[B \rightarrow \bullet \gamma, b]$ would be a valid item for viable $\operatorname{prefix} \delta \alpha$ for all $b \in \operatorname{FIRST}(\beta a)$. Note FIRST $(\beta a)=\operatorname{FIRST}(\beta a x)$.

goto1(I)

Let I be a set of $\operatorname{LR}(1)$ items and X be a grammar symbol. Then, $\operatorname{Goto1}(I, X)$ is the closure of the set of all items

$$
[A \rightarrow \alpha X \bullet \beta, a] \text { such that }[A \rightarrow \alpha \bullet X \beta, a] \in I
$$

If I is the set of valid items for some viable prefix γ, then $\operatorname{GOTO1}(I, X)$ is the set of valid items for the viable prefix γX.
goto1 (I, X) represents state after recognizing X in state I.

```
function goto1(I,X)
    let J be the set of items [A->\alphaX\bullet\beta,a]
        such that [A->\alpha\bulletX\beta,a]\inI
    return closure1(J)
```


Building the $L R(1)$ item sets for grammar G

We start the construction with the item $\left[S^{\prime} \rightarrow \bullet S, \$\right]$, where
S^{\prime} is the start symbol of the augmented grammar G^{\prime} S is the start symbol of G \$ represents EOF
To compute the collection of sets of $\mathrm{LR}(1)$ items

```
function items( }\mp@subsup{G}{}{\prime}\mathrm{ )
    sotcclosure1({[S'}->\bulletS,$]}
    C}\leftarrow{\mp@subsup{s}{0}{}
    repeat
        for each set of items s\inC
        for each grammar symbol }
            if goto1 }(s,X)\not=\phi and goto1(s,X)\not\in
            add goto1(s,X) to }
    until no more item sets can be added to }
    return C
```


Constructing the $\operatorname{LR}(1)$ parsing table

Build lookahead into the DFA to begin with
(1) construct the collection of sets of $\operatorname{LR}(1)$ items for G^{\prime}
(2) state i of the $\mathrm{LR}(1)$ machine is constructed from I_{i}
(1) $[A \rightarrow \alpha \bullet a \beta, b] \in I_{i}$ and $\operatorname{got} \circ 1\left(I_{i}, a\right)=I_{j}$
$\Rightarrow \operatorname{ACTION}[i, a] \leftarrow$ "shift j"
(2) $[A \rightarrow \alpha \bullet, a] \in I_{i}, A \neq S^{\prime}$
$\Rightarrow \mathrm{ACTION}[i, a] \leftarrow$ "reduce $A \rightarrow \alpha$ "
(3) $\left[S^{\prime} \rightarrow S \bullet, \$\right] \in I_{i}$
\Rightarrow ACTION $[i, \$] \leftarrow$ "accept"
(3) $\operatorname{gotol}\left(I_{i}, A\right)=I_{j}$
$\Rightarrow \mathrm{GOTO}[i, A] \leftarrow j$
(4) set undefined entries in ACTION and GOTO to "error"
(5) initial state of parser s_{0} is closure1 $\left(\left[S^{\prime} \rightarrow \bullet S, \$\right]\right)$

Back to previous example ($\neq \mathrm{SLR}(1))$

S	\rightarrow	$L=R$
	\mid	R
L	\rightarrow	$* R$
	\mid	$\langle\mathrm{id}\rangle$
R	\rightarrow	L

$$
\begin{array}{cr}
I_{0}: S^{\prime} \rightarrow \bullet S, & \$ \\
S \rightarrow \bullet L=R, & \$ \\
S \rightarrow \bullet R, & \$ \\
L \rightarrow \bullet R, & = \\
L \rightarrow \bullet \text { id }\rangle, & = \\
R \rightarrow \bullet & \$ \\
L \rightarrow \bullet * R, & \$ \\
L \rightarrow \bullet \text { id }\rangle, & \$ \\
I_{1}: S^{\prime} \rightarrow S \bullet & \$ \\
I_{2}: S \rightarrow L \bullet=R, & \$ \\
R \rightarrow L \bullet & \$ \\
I_{3}: S \rightarrow R \bullet & \$ \\
I_{4}: L \rightarrow * \bullet R, & =\$ \\
R \rightarrow L, & =\$ \\
L \rightarrow * R, & =\$ \\
L \rightarrow \bullet i d\rangle & =\$
\end{array}
$$

$$
\begin{aligned}
& I_{5}: L \rightarrow\langle\mathrm{id}\rangle \bullet, \quad=\$ \\
& I_{6}: S \rightarrow L=\bullet R, \$ \\
& R \rightarrow \bullet L, \quad \$ \\
& L \rightarrow \bullet * R, \quad \$ \\
& L \rightarrow \bullet \text { (id〉, \$ } \\
& I_{7}: L \rightarrow * R \bullet, \quad=\$ \\
& I_{8}: R \rightarrow L \bullet, \quad=\$ \\
& I_{9}: S \rightarrow L=R \bullet, \$ \\
& I_{10}: R \rightarrow L \bullet, \quad \$ \\
& I_{11}: L \rightarrow * \bullet R, \quad \$ \\
& R \rightarrow \bullet L \text {, } \\
& \text { \$ } \\
& L \rightarrow \bullet * R, \quad \$ \\
& L \rightarrow \bullet \text { id }\rangle, \quad \$ \\
& I_{12}: L \rightarrow\langle\mathrm{id}\rangle \bullet \quad \$ \\
& I_{13}: L \rightarrow * R \bullet, \quad \$
\end{aligned}
$$

I_{2} no longer has shift-reduce conflict: reduce on $\$$, shift on $=$

Example: back to SLR(1) expression grammar

In general, $\mathrm{LR}(1)$ has many more states than $\operatorname{LR}(0) / \operatorname{SLR}(1)$:

1	S	\rightarrow	E	4	T	\rightarrow	$T * F$
2	E	\rightarrow	$E+T$	5		\mid	F
3		\mid	T	6	F	\rightarrow	$\langle\mathrm{id}\rangle$
			7		\mid	(E)	

LR(1) item sets:
I_{0} :

$$
\begin{array}{ll}
S \rightarrow \bullet E, \quad \$ \\
E \rightarrow \bullet E+T,+\$ \\
E \rightarrow \bullet T, \quad+\$ \\
T \rightarrow \bullet T * F, & *+\$ \\
T \rightarrow \bullet F, & *+\$ \\
F \rightarrow \bullet \text { id }\rangle, & *+\$ \\
F \rightarrow \bullet(E), & *+\$
\end{array}
$$

I_{0}^{\prime} : shifting (
$I_{0}^{\prime \prime}$: shifting (
$F \rightarrow(\bullet E), \quad *+\$$
$E \rightarrow \bullet E+T,+$)
$E \rightarrow \bullet T, \quad+)$
$T \rightarrow \bullet T * F, *+$)
$T \rightarrow \bullet F, \quad *+)$
$F \rightarrow \bullet\langle\mathrm{id}\rangle, \quad *+$)
$F \rightarrow \bullet(E), \quad *+)$
$E \rightarrow \bullet E+T,+$)
$E \rightarrow \bullet T, \quad+)$
$F \rightarrow(\bullet E), \quad *+)$
$T \rightarrow \bullet T * F, *+$)
$T \rightarrow \bullet F, \quad *+)$
$F \rightarrow \bullet\langle\mathrm{id}\rangle, \quad *+$)
$F \rightarrow \bullet(E), \quad *+)$

Another example

Consider:

0	S^{\prime}	\rightarrow	S
1	S	\rightarrow	$C C$
2	C	\rightarrow	$c C$
3			d

state	ACTION			GOTO	
	c	d	$\$$	S	C
0	s3	s4	-	1	2
1	-	-	acc	-	-
2	s6	s7	-	-	5
3	s3	s4	-	-	8
4	r3	r3	-	-	-
5	-	-	r1	-	-
6	s6	s7	-	-	9
7	-	-	r3	-	-
8	r2	r2	-	-	-
9	-	-	r2	-	-

$\mathrm{LR}(1)$ item sets:

$$
\begin{aligned}
I_{0}: & S^{\prime} \rightarrow \bullet S, \quad \$ \\
& S \rightarrow \bullet C C, \\
& C \rightarrow \bullet C, \quad c d \\
& C \rightarrow \bullet d, \quad c d
\end{aligned}
$$

$$
I_{1}: S^{\prime} \rightarrow S \bullet, \quad \$
$$

$$
I_{2}: S \rightarrow C \bullet C, \$
$$

$$
C \rightarrow \bullet c C, \$
$$

$$
C \rightarrow \bullet d, \quad \$
$$

$$
I_{3}: C \rightarrow c \bullet C, c d
$$

$$
C \rightarrow \bullet C C, c d
$$

$$
C \rightarrow \bullet d, \quad c d
$$

$I_{4}: C \rightarrow d \bullet, \quad c d$
$I_{5}: S \rightarrow C C \bullet, \$$
$I_{6}: C \rightarrow c \bullet C, \$$
$C \rightarrow \bullet C C, \$$
$C \rightarrow \bullet d, \quad \$$
$I_{7}: C \rightarrow d \bullet, \quad \$$
$I_{8}: C \rightarrow c C \bullet, c d$
$I_{9}: C \rightarrow c C \bullet, \$$

LALR(1) parsing

Define the core of a set of $\operatorname{LR}(1)$ items to be the set of $\mathrm{LR}(0)$ items derived by ignoring the lookahead symbols.
Thus, the two sets

- $\left\{\left[A \rightarrow \alpha_{1} \bullet \alpha_{2}, \mathrm{a}\right],\left[B \rightarrow \beta_{1} \bullet \beta_{2}, \mathrm{~b}\right]\right\}$, and
- $\left\{\left[A \rightarrow \alpha_{1} \bullet \alpha_{2}, c\right],\left[B \rightarrow \beta_{1} \bullet \beta_{2}, d\right]\right\}$
have the same core.
Key idea:
If two sets of $L R(1)$ items, I_{i} and I_{j}, have the same core, we can merge the states that represent them in the ACTION and GOTO tables.

LALR(1) table construction

To construct LALR(1) parsing tables, we can insert a single step into the $\operatorname{LR}(1)$ algorithm
(1.5) For each core present among the set of $\mathrm{LR}(1)$ items, find all sets having that core and replace these sets by their union.
The goto function must be updated to reflect the replacement sets.

The resulting algorithm has large space requirements, as we still are required to build the full set of $\mathrm{LR}(1)$ items.

LALR(1) table construction

The revised (and renumbered) algorithm
(1) construct the collection of sets of $\operatorname{LR}(1)$ items for G^{\prime}
(2) for each core present among the set of $\mathrm{LR}(1)$ items, find all sets having that core and replace these sets by their union (update the gotol function incrementally)
(3) state i of the $\operatorname{LALR}(1)$ machine is constructed from I_{i}.
(1) $[A \rightarrow \alpha \bullet a \beta, b] \in I_{i}$ and goto1 $\left(I_{i}, a\right)=I_{j}$
\Rightarrow ACTION $[i, a] \leftarrow$ "shift j"
(2) $[A \rightarrow \alpha \bullet, a] \in I_{i}, A \neq S^{\prime}$
\Rightarrow ACTION $[i, a] \leftarrow$ "reduce $A \rightarrow \alpha$ "
(3) $\left[S^{\prime} \rightarrow S \bullet, \$\right] \in I_{i} \Rightarrow \operatorname{ACTION}[i, \$] \leftarrow$ "accept"
(4) $\operatorname{goto1}\left(I_{i}, A\right)=I_{j} \Rightarrow \operatorname{GOTO}[i, A] \leftarrow j$
(5) set undefined entries in ACTION and GOTO to "error"
(6) initial state of parser s_{0} is closurel $\left(\left[S^{\prime} \rightarrow \bullet S, \$\right]\right)$

Example

Reconsider:

0	S^{\prime}	\rightarrow	S
1	S	\rightarrow	$C C$
2	C	\rightarrow	$c C$
3			d

$$
C \rightarrow \bullet c C, \$
$$

$$
C \rightarrow \bullet d, \quad \$
$$

Merged states:

$$
\begin{aligned}
I_{36}: & C \rightarrow c \bullet C, c d \$ \\
& C \rightarrow \bullet c C, c d \$ \\
& C \rightarrow \bullet d, \quad c d \$ \\
I_{47}: & C \rightarrow d \bullet, \quad c d \$ \\
I_{89}: & C \rightarrow c C \bullet, c d \$
\end{aligned}
$$

$$
\begin{aligned}
& I_{0}: S^{\prime} \rightarrow \bullet S, \quad \$ \quad I_{3}: C \rightarrow c \bullet C, c d \quad I_{6}: C \rightarrow c \bullet C, \$ \\
& S \rightarrow \bullet C C, \$ \quad C \rightarrow \bullet c C, c d \quad C \rightarrow \bullet c C, \$ \\
& C \rightarrow \bullet C C, c d \quad C \rightarrow \bullet d, \quad c d \quad C \rightarrow \bullet d, \quad \$ \\
& C \rightarrow \bullet d, \quad c d \quad I_{4}: C \rightarrow d \bullet, \quad c d \quad I_{7}: C \rightarrow d \bullet, \quad \$ \\
& I_{1}: S^{\prime} \rightarrow S \bullet, \quad \$ \quad I_{5}: S \rightarrow C C \bullet, \$ \quad I_{8}: C \rightarrow c C \bullet, c d \\
& I_{2}: S \rightarrow C \bullet C, \$
\end{aligned}
$$

Question

What can you say about the sizes of the $\operatorname{SLR}(1)$ table and the $\operatorname{LALR}(1)$ table for the same grammar?

They are the same!
$L R(1)$ item sets with the same core correspond to a unique $L R(0)$ item set.

Example: LR(1) Itemsets

$S \rightarrow$	$\begin{aligned} & L=R \\ & R \end{aligned}$	$\begin{aligned} I_{0}: & S^{\prime} \rightarrow \bullet S, \quad \$ \\ & \rightarrow \bullet L=R, \$ \end{aligned}$
$L \rightarrow$	*R	$S \rightarrow \bullet R$,
।	$\langle\mathrm{id}\rangle$	$L \rightarrow \bullet * R, \quad=$
	L	$\begin{array}{ll} L \rightarrow \bullet\langle\mathrm{id}\rangle, & = \\ R \rightarrow \bullet L, & \$ \end{array}$
		$L \rightarrow \bullet * R$,
		$L \rightarrow \bullet\langle\mathrm{id}\rangle, \quad \$$
		$I_{1}: S^{\prime} \rightarrow S \bullet$, \$
		$I_{2}: S \rightarrow L \bullet=R, \$$
		$R \rightarrow L \bullet, \quad \$$
		$I_{3}: S \rightarrow R \bullet, \quad \$$
		$I_{4}: L \rightarrow * \bullet R, \quad=\$$
		$R \rightarrow \bullet L, \quad=\$$
		$L \rightarrow \bullet * R, \quad=\$$
		$L \rightarrow \bullet\langle\mathrm{id}\rangle, \quad=\$$

$$
\begin{aligned}
& I_{5}: L \rightarrow\langle\mathrm{id}\rangle \bullet, \quad=\$ \\
& I_{6}: S \rightarrow L=\bullet R, \$ \\
& R \rightarrow \bullet L \text {, } \\
& \text { \$ } \\
& L \rightarrow \bullet R, \quad \$ \\
& L \rightarrow \bullet\langle\mathrm{id}\rangle, \quad \$ \\
& I_{7}: L \rightarrow * R \bullet, \quad=\$ \\
& I_{8}: R \rightarrow L \bullet, \quad=\$ \\
& I_{9}: S \rightarrow L=R \bullet, \$ \\
& I_{10}: R \rightarrow L \bullet, \quad \$ \\
& I_{11}: L \rightarrow * \bullet R, \quad \$ \\
& R \rightarrow \bullet L, \quad \$ \\
& L \rightarrow \bullet * R, \quad \$ \\
& L \rightarrow \bullet\langle\mathrm{id}\rangle, \quad \$ \\
& I_{12}: L \rightarrow\langle\mathrm{id}\rangle \bullet, \quad \$ \\
& I_{13}: L \rightarrow * R \bullet, \quad \$
\end{aligned}
$$

Example: LALR(1) Itemsets

$$
\begin{aligned}
& S \quad \rightarrow \quad L=R \quad I_{0}: \quad S^{\prime} \rightarrow \bullet S, \quad \$ \\
& R \\
& L \rightarrow * R \\
& \langle\mathrm{id}\rangle \\
& R \rightarrow L \\
& S \rightarrow \bullet L=R, \$ \\
& S \rightarrow \bullet R, \quad \$ \\
& L \rightarrow \bullet * R, \quad= \\
& L \rightarrow \bullet\langle\mathrm{id}\rangle, \quad= \\
& R \rightarrow \bullet L, \quad \$ \\
& L \rightarrow \bullet * R, \quad \$ \\
& L \rightarrow \bullet\langle\mathrm{id}\rangle, \quad \$ \\
& I_{1}: \quad S^{\prime} \rightarrow S \bullet, \quad \$ \\
& I_{2}: \quad S \rightarrow L \bullet=R, \$ \\
& R \rightarrow L \bullet, \quad \$ \\
& I_{3}: \quad S \rightarrow R \bullet, \quad \$ \\
& I_{4,11}: L \rightarrow * \bullet R, \quad=\$ \\
& R \rightarrow \bullet L, \quad=\$ \\
& L \rightarrow \bullet * R, \quad=\$ \\
& L \rightarrow \bullet\langle\mathrm{id}\rangle, \quad=\$ \\
& I_{5,12}: L \rightarrow\langle\mathrm{id}\rangle \bullet, \quad=\$ \\
& I_{6}: \quad S \rightarrow L=\bullet R, \$ \\
& R \rightarrow \bullet L, \quad \$ \\
& L \rightarrow \bullet * R \text {, } \\
& \text { \$ } \\
& L \rightarrow \bullet\langle\mathrm{id}\rangle, \quad \$ \\
& I_{7,13}: L \rightarrow * R \bullet, \quad=\$ \\
& I_{8,10}: R \rightarrow L \bullet, \quad=\$ \\
& I_{9}: \quad S \rightarrow L=R \bullet, \$
\end{aligned}
$$

Has the same number of states as LR(0) DFA of the grammar

LALR(1) Conflicts

Can we always merge states with the same core? Can it create new conflicts?

- Merging LR(1) states with the same core cannot create a new shift/reduce conflict.
- For contradiction, suppose after merging, the state contains items $[A \rightarrow \alpha \bullet a]$ and $[B \rightarrow \beta \bullet a \gamma, b]$.
- Then, one of the original states before merging must have the items [$A \rightarrow \alpha \bullet, a]$ and $[B \rightarrow \beta \bullet a \gamma, c]$, since all original states must have the same core.
- This indicates a shift-reduce conflict in the original LR(1) state.
- The shift action only depends on the core and not the lookahead.
- Note that merging LR(1) states can create new reduce/reduce conflicts.
- Example 4.58 in the Dragon Book.

LALR(1) Conflicts

Can we always merge states with the same core? Can it create new conflicts?

- However, merging LR(1) states can create new reduce/reduce conflicts.
- For example, consider $\operatorname{LR}(1)$ itemsets $\{[A \rightarrow \alpha \bullet, a],[B \rightarrow \beta \bullet, b]\}$ and $\{[A \rightarrow \alpha \bullet, b],[B \rightarrow \beta \bullet, a]\}$.
- After merging, the LALR(1) itemset would be

$$
\{[A \rightarrow \alpha \bullet, a b],[B \rightarrow \beta \bullet, a b]\} .
$$

- There is a reduce/reduce conflict on both a and b.
- The Dragon Book contains a detailed example illustrating the above scenario (Section 4.7.4, Example 4.58).

More efficient LALR(1) construction

Observe that we can:

- represent I_{i} by its basis or kernel: items that are either $\left[S^{\prime} \rightarrow \bullet S, \$\right]$ or do not have • at the left of the RHS
- compute shift, reduce and goto actions for state derived from I_{i} directly from its kernel

This leads to a method that avoids building the complete canonical collection of sets of $L R(1)$ items

Self reading: Section 4.7.5 Dragon book

Ambiguous Grammars and LR Parsing

Ambiguous grammars are neither $\operatorname{LR}(\mathrm{k}), \operatorname{SLR}(\mathrm{k})$ or $\operatorname{LALR}(\mathrm{k})$ for any k.

- In general, we call a grammar $\mathrm{LR}(\mathrm{k})$ if there are no conflicts in any of the $\operatorname{LR}(k)$ item-sets of the grammar. That is, we can parse any string in the language of the grammar using a LR(k) parser without encountering any conflicts.
- Similar definitions for $\operatorname{SLR}(k)$ and $\operatorname{LALR}(k)$.

The role of precedence

Precedence and associativity can be used to resolve shift/reduce conflicts in ambiguous grammars.

- lookahead with higher precedence \Rightarrow shift
- same precedence, left associative \Rightarrow reduce Advantages:
- more concise, albeit ambiguous, grammars
- shallower parse trees \Rightarrow fewer reductions

Classic application: expression grammars

The role of precedence: Example

With precedence and associativity, we can use:

$$
E \rightarrow E+E|E * E|(E)|\langle\mathrm{id}\rangle|\langle\text { num }\rangle
$$

This eliminates useless reductions (single productions) but causes shift/reduce conflicts.

- In particular, the LR(0) DFA for this grammar will contain a state with the items $E \rightarrow E+E \bullet, E \rightarrow E \bullet+E$ and $E \rightarrow E \bullet * E$.
- This shift/reduce conflict cannot be resolved by $\operatorname{SLR}(k), \operatorname{LR}(k)$ or LALR(k).
- Since $*$ takes precedence over + , shift if the next symbol is $*$.
- For enforcing left-associativity, reduce if the next symbol is + .

Error recovery in shift-reduce parsers

The problem

- encounter an error entry in the parsing table for the current state and next symbol
- No shift/reduce action defined

Approaches to Syntax Error Recovery, from simple to complex:

- Panic Mode: Discard tokens until a synchronizing token is found
- Error Productions: specify in the grammar known common mistakes
- Automatic local or global correction: try token insertion or deletions
Parsers typically use a combination of these techniques to handle different kinds of errors.

Panic Mode Recovery

Panic mode error recovery: We want to parse the rest of the file Restarting the parser

- find a restartable state on the stack
- move to a consistent place in the input
- print an informative message to stderr

Typically, this involves popping from the stack until a state s with GOTO on non-terminal A is defined KC: where does A come from?. Then, discard input symbols until $a \in \operatorname{FOLLOW}(A)$ is found. Resume by pushing $\operatorname{GOTO}(s, A)$ on the stack.
A would be non-terminals representing major program pieces, such as expression, statement, block.

Recovery using Error Productions

- Specify in the grammar known common mistakes.
- Essentially, parse and identify errors for smooth recovery.
- Example:
- Error: The program contains $5 x$ instead of $5 * x$.
- Add the production $E \rightarrow E E$.

Recovery by Automatic Local or Global Correction

- Find a correct 'nearby' program by token insertions or deletions.
- Either by exhaustive search or by the context.
- Example
- For the expression grammar, in the parsing state $E \rightarrow \bullet E+E$, the next token should be a $\langle\mathrm{id}\rangle$.
- Suppose the next input token is + or $*$.
- The parser inserts $\langle\mathrm{id}\rangle$ in the input implicitly, by pushing the state $E \rightarrow E \bullet+E$ on the stack.
- For more details, refer to Example 4.68 in the Dragon Book.

Left versus right recursion

Right Recursion:

- needed for termination in predictive (LL) parsers
- requires more stack space in LR parsers
- right associative operators

Left Recursion:

- works fine in bottom-up (LR) parsers
- limits required stack space
- left associative operators

Rule of thumb:

- right recursion for top-down parsers
- left recursion for bottom-up parsers

Left recursive grammar:

$$
\begin{aligned}
& E \rightarrow E+T \mid E \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid \text { Int }
\end{aligned}
$$

After left recursion removal

$$
\begin{array}{ll}
E \rightarrow & T E^{\prime} \\
E^{\prime} \rightarrow & +T E^{\prime} \mid \varepsilon \\
T \rightarrow & F T^{\prime} \\
T^{\prime} \rightarrow & * F T^{\prime} \mid \varepsilon \\
F \rightarrow & (E) \mid \text { Int }
\end{array}
$$

Parse the string $3+4+5$

Parsing review

- Recursive descent

A recursive descent parser directly encodes a grammar into a series of mutually recursive procedures.

- LL(k)

An $\operatorname{LL}(k)$ parser must be able to recognize the use of a production after seeing only the first k symbols of its right hand side.

- LR (k)

An $\operatorname{LR}(k)$ parser must be able to recognize the occurrence of the right hand side of a production after having seen all that is derived from that right hand side with k symbols of lookahead.

Grammar hierarchy

- $\operatorname{LR}(\mathrm{k}+1)>\operatorname{LR}(\mathrm{k})$
- $\operatorname{LR}(k)>\operatorname{LALR}(k)>\operatorname{SLR}(k)>\operatorname{LR}(0)$
- $L L(k+1)>L L(k)$
- $\operatorname{LR}(k)>\operatorname{LL}(k)$

