KC Sivaramakrishnan

IIT Madras

Some definitions

Recall

o For a grammar G, with start symbol S, any string a such that
S =* a is called a sentential form

o If a € V/, then o is called a sentence in L(G)

A left-sentential form is a sentential form that occurs in the leftmost
derivation of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost
derivation of some sentence.

An unambiguous grammar will have a unique leftmost/rightmost
derivation.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 2/90

Bottom-up parsing

Consider:
E — E+T|E-T|T
T — TxF|T/F|F
F — num]|id
Goal:

Given an input string w and a grammar G, construct a parse
tree by starting at the leaves and working to the root.

id * id F x id T % id T « F T E
A |] /TN |
id F F id T %« F T

| | L N

id id }!7‘ id ?’* llv"

id F id

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 3/90

Reductions

Reduction:

@ At each reduction step, a specific substring matching the body of
a production is replaced by the non-terminal at the head of the
production.

Key decisions
o When to reduce?
@ What production rule to apply?

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 4/90

Reductions VS Derivations

o Recall: In derivation: a non-terminal in a sentential form is
replaced by the body of one of its productions.

@ A reduction is reverse of a step in derivation.

@ Bottom-up parsing is the process of “reducing” a string w to the
start symbol.

o Goal of bottom-up parsing: build derivation tree in reverse.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 5/90

Example

Consider the grammar

©
>
o
0]

A=
0.0 >

and the input string abbcde

The Reduction:
Rightmost Derivation:

Prod'n. | Sentential Form
3 alb bcde S = aABe
2 alAbc [de = aAde
4 aA@e = aAbcde
1 = abbcde
— S

Notice that the reduction is actually reverse of the rightmost derivation.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 6/90

Another Example

id = id F % id T % id T « F T
[| 7] /TN
id Fl’ I|7' id ff"* IIT
id id }|7‘ id
id

E=>T=>TxF=Txid=F*id = idx*1id

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

T
/I\
i
II? id

id

7/90

Bottom-up Parsing and Rightmost Derivations

A bottom-up parser traces a rightmost derivation in reverse.

Consequence of this fact:
@ Suppose afw is a step of a bottom-up parse.

@ Assume that the next reduction is by X — 8
o Then, what can we say about ®?

o o must consist of only terminal symbols.
o aXw = afo is a step in a rightmost derivation.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 8/90

Handles

S
Informally, a “handle” is
O a substring that matches the body
© of a production (not necessarily
the first such substring),
@ and reducing this handle,
A represents one step of reduction
/\ (or reverse rightmost derivation).
B w
The handle A — B in the parse tree
for afw

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 9/90

Handle-pruning

The process to construct a bottom-up parse is called handle-pruning.
To construct a rightmost derivation in reverse

S=n=N=>r=>"""=%h1=>Yh=W

we apply the following simple algorithm
for i = n downto 1
@ find the handle A;—f; in ¥
@ replace ﬁi with A; to generate 7%

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 10/90

How to find handles?

@ We know that all symbols to the right of a handle must be terminal
symbols.
o Idea: Split the string into two substrings

o Right substring is as yet unexamined by parsing (a string of
terminals)
o Left substring has terminals and non-terminals

@ The dividing point is marked by a |
o | is not part of the string

@ Initially, all input is unexamined | x;x; ... x,.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 11/90

Bottom-up Parsing

Bottom-up parsing uses only two kinds of actions:
@ Shift: Move | one place to the right.

o That is, shift a terminal to the left substring.
o alaw~ oa|w

@ Reduce: Apply an inverse production to the right end of the left
sub-string.
o If A — vyis a production, then ay|w~ oA |w

Bottom-up parsing is also called Shift-Reduce Parsing.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 12/90

Shift-Reduce Parsing: Example 1

|id = id
id | » id
F|~* id
T|~* id
T * id |
T * F |
T

E|

KC Sivaramakrishnan (IIT Madras)

Shift

Reduce by F — id
Reduce by T — F
Shift

Reduce by F — id
Reduceby T — T x F
Reduce by E—»T

CS3300 - Monsoon 2022

13/90

Shift-Reduce Parsing: Example 2

11§ — aABe
2|A — Abc
3 | b
4|/B — d

| abbcde

ab | bcde Shift

a A |bcde Reduce by A — b

aAbc|de Shift

aAlde Reduce by A — Abc

aAdl|e Shift

aAB|e Reduce by B — d

aABe | Shift

S Redece by S — aABe

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 14/90

Stack implementation

We can implement the division into left and right sub-strings using a
stack.

o Top of the stack will be the marker | (implicitly).
o Shift-reduce parsers use a stack and an input buffer

@ initialize stack with $
@ Repeat until the top of the stack is the goal symbol and the input
token is $
a) find the handle
if we don’t have a handle on top of the stack, shift an input symbol

onto the stack
b) prune the handle

if we have a handle A — on the top of the stack, reduce

i) pop | B | symbols off the stack
ii) push A onto the stack

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 15/90

Example: Parsing x — 2 x y

KC Sivaramakrishnan (IIT Madras)

CS3300 - Monsoon 2022

1S - FE Stack | Input |Action
2E—E+T $ (id) — (num) * (id)[S
3 | E—T $@ — {(num i R9
4 | T $(factor) — (num) =* (id)|R7
$(term) — (num R4
ST - TxF $expr) S
6 | T/F ${expr) — S
7 F $(expr) — (num) R8
$1F - (num) $(epr) - faior i
; t
o | fid Stenor) — fterm) + s
${expr) — (term) x (id) R9
$(expr) — (term) * (factor) R5
$(expr) — (term) R3
$(expr) R1
$(goal) A

16/90

Example: Rightmost derivation of x — 2 x y

The left-recursive expression grammar

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

1| (goal) ::= (expr) Prod’n.
2| (expr) ::= (expr) + (term) -
3 | (expr) — (term) 1
4 | (term) 3
5| (term) ::= (term) * (factor) 5
6 | (term)/(factor) 9
7 | (factor) 7
8|(factor) ::= (num) 8
9 | (id) .
7
9

Sentential Form

(goal)

(expr)

(expr) — (term)

(expr) — (term) * (factor)
(expr) — (term) x* (id)
(expr) — (factor) * (id)
(expr) — (num) * (id)
(term) — (num) * (id

17/90

Handle position

In shift-reduce parsing, handles will appear only at the top of
the stack.

Proof.

The two successive steps in a rightmost derivation will be of the form:
@D S aaz 2 afByz 2 aByyz (for A — BBy and B —)
@ s aBxAz aBxyz = ayxyz (for A — yand B —)

where x,y, z string of terminals. A is the right-most non-terminal in both
cases.

Case 1: Case 2:
STACK INPUT ACTION STACK INPUT ACTION
$aBy vz$ R Say xyz$ R
$aBB vz$ N $aB xyz$ S
$aBBy) R $aBxy z$ R
$aA z$ $aBxA 7%

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 18/90

When to shift and when to reduce?

Consider:
E — E+4T|E-T|T

T — T+F|T/F|F
F — num|id

o We know that the handle will appear on the top of the stack.
o But we still don’t know when to shift and when to reduce.
o For example, while parsing id x id, at the stage T | *id, we should

not reduce using E — T.
o Intuitively, this is because Ex is never a prefix of a right-sentential

form in the grammar.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 19/90

Viable Prefix

@ « is a viable prefix if there is an o such that o | w is a state of a
shift-reduce parser.
@ A viable prefix does not extend past the right end of the handle.

o The suffix of a viable prefix either is a handle, or it can be expanded
into a handle by shifting.

Not all prefixes right-sentential forms are viable prefixes. Consider:

EL T T+FE Txid2S Frid = id*id

o While ia =« is a prefix of right-sential form, it is not a viable prefix
as it does not appear on the shift-reduce stack.

o It extends past the handle id.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 20/90

Important fact about viable prefixes

For any grammar, the set of viable prefixes is a regular language.

o We show how to compute an automata that accepts viable
prefixes.
@ Such an automata can help automate shift-reduce decisions.

o If the automata permits a transition on a symbol to another valid
state (another viable prefix), | can shift as | can eventually find a
handle.

o Otherwise, | will have to reduce.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 21/90

ltems

We shall use the concept of items to help build the automata that
recognizes viable prefixes.

An jtem is a production with a ¢ somewhere on the RHS, denoting a
focus point.

The e indicates how much of an item we have seen at a given state in
the parse:

[A — eXYZ] indicates that the parser is looking for a string that can be
derived from XYZ

[A — XY e Z] indicates that the parser has seen a string derived from
XY and is looking for one derivable from Z

A — XYZ generates 4 items:
D [A — eXYZ]
@ [A—>XeYZ]
@ [A—XYeZ]
@ [A— XYZo]

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 22/90

Intuition

@ The problem in recognizing viable prefixes is that the stack has
only bits and pieces of the rhs of productions.

o If it had a complete rhs, we could reduce
@ These bits and pieces are always prefixes of RHS of productions.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 23/90

Example1

Consider:
E — E+T|E-T|T
T — T«F|T/F|F
F — num|id

@ Consider the string id+id*id.
o E+Tx|id is a state of shift-reduce parse.
o From the top of the stack:
o Txisaprefixof T —TxF
o E+isaprefixof E—-E+T
o We can consider the stack to contain a stack of items. From the
top:
o T — TxeF —we've seen Tx; hope to see F.
o E— E+eT —we've seen E+; hopeto see T.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 24/90

Example2

Consider:
E — E+4T|E-T|T
T — TxF|T/F|F
F — num|id

Consider the string 1d x id. While parsing, consider the state Tx | id.
o T=xis a prefix of the RHS of T — T« F.
o The corresponding item would be T — T x oF.
o ¢is a prefix of the RHS of E — T.
o The corresponding item would be E — oT.

The stack can be considered to contain those two items.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 25/90

Generalization

@ In general, the stack may have many prefixes of RHSs:
Prefix| Prefix; . .. Prefix,
o Let Prefix; be a prefix of RHS of X; — ;.
o Prefix; will eventually reduce to X;.
o The missing part of o;_| starts with X;, i.e. there is a production
Xi_1— Preﬁx,-,lX,-ﬁ for some ﬁ
o Recursively, Prefix; ... Prefix, eventually reduces to the missing
part of .

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 26/90

Recognizing Viable Prefixes

Idea: To recognize viable prefixes, we must
@ Recognize a sequence of partial RHS’s of productions, such that

@ Each partial RHS can eventually reduce to part of the missing
suffix of its predecessor in the sequence.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 27/90

An NFA recognizing Viable Prefixes

@ Add a new start production S’ — S to the grammar.
@ The NFA states are the items of the grammar.
o The start state will be §' — oS

@ Foritem E — ace X3, add transition £ — a e XB < E — aX e B.

@ Foritem E — o e X3 and production X — y, add transition
E— aeXB <X — ey.

® Every state is an accepting state.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 28/90

Example

Grammer G :
11§ — E
2| E — E+T
3 | E-T
4 | T
5/T — TxF
6 | T
7 | F
8| F — (num)
9 | (id)

Portion of the NFA for recognizing viable prefixes of
G.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 29/90

Recall: Shift-Reduce Parsing idxid

|id = id
id | » id
F|~* id
T|~* id
T * id |
T * F |
T|

E|

KC Sivaramakrishnan (IIT Madras)

Shift

Reduce by F — id
Reduce by T — F
Shift

Reduce by F — id
Reduceby T — T x F
Reduce by E—»T

CS3300 - Monsoon 2022

30/90

Recall: Shift-Reduce Parsing idxid

|id * id
id | » id
F‘* id
T|+ id
T+ id|
T * F |
T|

E|

The NFA recognizes all the viable prefixes
encountered during the parse.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 31/90

DFA for recognizing viable prefixes

o We can convert the NFA to a DFA.

o Each state will now be a set of items.
o Transitions will be on a grammar symbol.

o The states of this DFA are called “canonical collection of items” or
“canonical collection of LR(0) items”.

o Each item that we have described so far is also called a LR(0) item.

@ The Dragon Book defines procedures CLOSURE and GOTO to
directly generate the DFA.

o This DFA is also sometimes called the Characteristic Finite State
Machine (CFSM) of the grammar.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 32/90

CLOSURE

Let 7 be a set of LR(0) items.

function CLOSURE (/)
repeat
if [A—-aeBflel
add [B—ey] to I
until no more items can be added to [
return [

Note that this is nothing but the e-closure of states in the NFA.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 33/90

GOTO

Let 7 be a set of LR(0) items and X be a grammar symbol.

Then, GOTO(Z,X) is the closure of the set of all items
[A— aXef] suchthat[A — oceXB| el

GOTO(I,X) represents state after recognizing X in state /.
function GOTO (I, X)
let J be the set of items [A— aXef]

such that [A— aeXB]el
return CLOSURE (J)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

34/90

Building the LR(0) item sets

We start the construction with the item [S" — ¢S$], where

S is the start symbol of the augmented grammar G’
S is the start symbol of G
$ represents EOF

To compute the collection of sets of LR(0) items

function items (G')
5o < CLOSURE({[S" — eS$]})
C < {so}
repeat
for each set of items se€C
for each grammar symbol X
if GOTO(s,X)# ¢ and GOTO(s,X) ¢ C
add GOTO(s,X) to C
until no more item sets can be added to C
return C

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 35/90

LR(0): Example

1S — ES I

2|/E — E+T

3 | T

41T — (id)

|

I
143
I

KC Sivaramakrishnan (IIT Madras)

1S — oL$

E—eE+T
E — oT
T — o(id)
T — o(E)

S—>Ee$

E—FEe+T

:S — ESe
E— E+ T

T — o(id)
T — o(E)

CS3300 - Monsoon 2022

E—>E+Te
T — (id)e
:T — (oF)

E—SeE+T
E — oT
T — o(id)
T — o(E)

:T — (Ee)

E—FEe+T

:T—)(E)o
E—Te

36/90

Valid ltems

o ltem X — B eyis valid for a viable prefix af} if
S="aXw= afyo

by a right-most derivation.

o After parsing o3, the valid items are the possible tops of the stack
of items.

o Alternatively, an item I is valid for a viable prefix « if the DFA
recognizing viable prefixes terminates on input « in a state s
containing 1.

o The items in s describe what the top of the item stack might be after
reading input a.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 37/90

Valid ltems: Example

1/S — E%
2/1E — E+4T
3 | T
41T — (id)

|

® ©®© O

KC Sivaramakrishnan (IIT Madras)

L
I;

T — (eE) is a valid item for (. Also for

'S — oFE$

E—eE+T
E— oT
T — o(id)
T — o(E)

S FEe$

E—Ee+T

S — ESe
E— E+eT

T — o(id)
T — o(E)

E+((GE+((-

CS3300 - Monsoon 2022

Iy
I5
Is

I;

I3
Iy

E—E+Te
:T—><id>o
:T — (eE)

E—eE+T
E— oT
T — o(id)
T — o(E)

: T — (Ee)

E—Ee+T

:T—>(E)o
E—Te

38/90

Recall: Stack implementation of Shift-Reduce Parsing

Shift-reduce parsers use a stack and an input buffer

@ initialize stack with $
@ Repeat until the top of the stack is the goal symbol and the input
token is $
a) find the handle
if we don’t have a handle on top of the stack, shift an input symbol

onto the stack
b) prune the handle

if we have a handle A — 8 on the top of the stack, reduce

i) pop | B | symbols off the stack
ii) push A onto the stack

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 39/90

Basic LR(0) Parsing

Assume

o stack contains «
o next input symbol is a
o DFA on input o terminates in state s

Shift if s contains the item X — B e aw.

©

©

o Equivalent to saying that state s has a transition labelled a.

©

Reduce by X — B if s contains the item X — fe.
o Thatis, pop |B| symbols from the stack and push X.

Accept if the stack contains S and input token in $.
Report an error if no shift/reduce moves are possible.

©

o

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

40/90

Example: Parsing id + id

Iy: S — oE$ I4:E—E+Te
E—eE+T Is:T — (id)e
E— T Is: T — (eE)
T — o(id) E—eE+T
T — o(E) E — oT
I} :S—Ee$ T — o(id)
E—>Ee+T T — o(E)
IzZS*)E$O I7:T*>(EO)
s T) L:E—E+eT E—Ee+T
T — o(id) Ig:T— (E)e
T — o(E) Io:E—Te
|id+ id$ | 8(0,e)=0 Shift id
id|+id$ | 8(0,id)=5 Reduce T — id
T|+1id$ | 8(0,7)=9 Reduce E— T
E|+id$ | 8(0,E)=1 Shift +
E+|id$ | 8(0,E4+)=3 Shift id

E+id/$ | 8(0,E+id)=5 | Reduce T — id
E+T|$ | 5(0,E+T)=4 | Reduce E—E+T
E|$ 5(0,E)=1 Shift $
E$| 5(0,E8) =2 Accept
KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 41/90

An Optimization

@ Rerunning the automaton from the start state at each step is
wasteful

o Much of the work is repeated.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 42/90

Example: Repeated Work in Basic LR(0) Parsing

Iy: S — oE$ I4:E—E+Te
E—eE+T Is:T — (id)e
E— T Is: T — (eE)
T — o(id) E—eE+T
T — o(E) E — oT
I} :S—Ee$ T — o(id)
E—>Ee+T T — o(E)
IzZS*)E$O I7:T*>(EO)
s T) L:E—E+eT E—Ee+T
T — o(id) Ig:T— (E)e
T — o(E) Io:E—Te
|id+ id$ | 8(0,e)=0 Shift id
id|+id$ | 8(0,id)=5 Reduce T — id
T|+1id$ | 8(0,7)=9 Reduce E— T
E|+id$ | 8(0,E)=1 Shift +
E+|id$ | 8(0,E4+)=3 Shift id
E+id|$ | 8(0,E+id)=5 | Reduce T — id
E+T|$ | 5(0,E+T)=4 | Reduce E—E+T
E|$ 5(0,E)=1 Shift $
E$| 5(0,E8) =2 Accept

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 43/90

An Optimization

@ Rerunning the automaton from the start state at each step is
wasteful

o Much of the work is repeated.

o Instead, we can remember the state of the automaton for each
prefix of the stack.
o This state can be stored on the stack itself.
o In fact, we will only store states on the stack now.

@ Optimized LR(0) parsing algorithm uses two tables: ACTION and
GOTO.
o ACTION(i,a) is defined for every state i of the DFA and every
terminal symbol a.
o GOTO(i,A) is defined for every state i of the DFA and every
non-terminal symbol A.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 44/90

Model of an LR Parser

Input Iall--- ait- lan‘$ ‘
LR
Stack Sm [Parsing — Qutput
s Program
m—1

22 AN

ACTION | GOTO

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 45/90

Constructing the LR(0) parsing table

@ construct the collection of sets of LR(0) items for the grammar
@ state i of the DFA is constructed from I;
@ [A— aeaP] €l and GOTO(f;,a) =1
= ACTION[i,a] < “shiftj",Va #$
@ [A — (XO] S]l',A 7é Y
= ACTION[i,a] < “reduce A — a”, Va
@ [S/*)SO$] el
= ACTION[i, $] < “accept’,
@ coto(l;,A) =1
= GOTO[i,A] < j
@ set undefined entries in ACTION and GOTO to “error’
@ initial state of parser sy is CLOSURE([S" — oS9])

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 46/90

LR(0) Parsing Algorithm

The skeleton parser:

push sg
token < next_token ()
repeat forever

S < top of stack

if action[s,token] = "shift s;" then
push s;
token ¢ next_token|()

else if action[s,token] = "reduce A—+ﬁ"
then

pop | B| states
s’ <+ top of stack
push gotol[s’, A]

else if action[s, token] = "accept" then
return

else error ()

“How many ops?”: k shifts, [reduces, and 1 accept, where k is length
of input string and [is length of reverse rightmost derivation

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 47/90

LR(0) Parsing Table: Example

1/S — E$ Iy

2|/E — E+T

3 | T

41T — (id)

|

I
14)
I

KC Sivaramakrishnan (IIT Madras)

1S — oL$

E—eE+T
E— oT
T — o(id)
T — o(E)

S—>Ee$

E—FEe+T

:S — ESe
E— E—+ T

T — o(id)
T — o(E)

CS3300 - Monsoon 2022

Iy
Is
Is

E—>E+Te
T — (id)e
:T — (oF)

E—eE+T
E — oT
T — o(id)
T — o(E)

:T — (Ee)

E—FEe+T

:T—)(E)o
E—Te

48/90

LR(0) Parsing Table: Example

state ACTION GOTO
id() + $[SET

r5r5r5r5 5 |—— —
r3r3r3r3 r3|—— —

0 |[sSs6— - — -1 9
1 |- — —s3accl—-— —
2 _ e - = = == =
3 |sbsb—- - - |-— 4
4 r2r2r2r2 r2|—— —
5 |rArdr4rd r4 |—— —
6 |[sbs6— - —|-7 9
7 |- —s8s3 — |-— —
8

9

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 49/90

LR Parsing Algorithm: Parsing id + id

&

N mw
—1—11

N R W =
—
o
~

. =
!
~—

Stack

N Y
+
ﬂ

Input

0

05
09
01
013
0135
0134
01

id+id$
+1d$
+id$
+1d$
id$

$
$

KC Sivaramakrishnan (IIT Madras)

state ACTION GOTO

id () + $ISET
0 |sSs6— - — -1 9
1 |- — —s3accl—— —
2 _ e = = == =
3 |sbsb—- - - |-— 4
4 |r2r2r2r2 r2|—— —
5 |rdrdrdrd r4 |—— —
6 |[sbs6— - - |-7 9
7 |— —s8883 — |—— —
8 |r5r5r5+15 (5 |—— —
9 r3r83r3r3 r3|—— —

CS3300 - Monsoon 2022

50/90

LR(0) Conflicts

@ LR(0) has a reduce/reduce conflict if any state has two reduce
items: X — ae and Y — fe.
o Our running example of the simple expression grammar with just +
and () does not have reduce-reduce conflicts.
@ LR(0) has a shift/reduce conflict if any state has a reduce item and
a shiftitem: X > aeand Y — B eay.
o Our running example of the simple expression grammar does not
have shift/reduce conflicts as well.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 51/90

Conflicts in the ACTION table

LR(0) conflicts will manifest in the ACTION table as multiple entries for
some cell.
Conflicts can be resolved through lookahead. Consider:

2 A—¢elaxa
= shift-reduce conflict

Q0 a:=b+tcx*d
requires lookahead to avoid shift-reduce conflict after shifting c
(need to see * to give precedence over +)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 52/90

LR parsing with lookahead

Three common techniques to build LR parsers with lookahead:

@ SLR(k)
o smallest class of grammars
o smallest tables (number of states)
o simple, fast construction
@ LR(k)
o full set of LR(k) grammars
o largest tables (number of states)
o slow, large construction
@ LALR(k)
o intermediate class of grammars
o same number of states as SLR(k)
o canonical construction is slow and large
o better construction techniques exist

Here k indicates the number of lookahead symbols
We will study SLR(1), LR(1) and LALR(1).

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

53/90

Why study LR parsers?

@ LR parsers can be constructed for virtually all context-free
programming language constructs

o LR-parsing is the most general non-backtracking shift-reduce
parsing method known. It is also one of the most efficient parsing
methods.

o LR parsers detect an error as soon as possible in a left-to-right
scan of the input

o LR grammars describe a proper superset of the languages
recognized by predictive (i.e., LL) parsers

LL(k): recognize use of a production A — 3 seeing first k
symbols derived from 3

LR(k): recognize the handle B after seeing everything
derived from B plus k lookahead symbols

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 54/90

Basic SLR(1) Parsing: Simple Lookahead LR

Assume

o stack contains o
o next input symbol is a
o DFA on stack o terminates in state s

Shift if s contains the item X — B eaw.

©

©

o Equivalent to saying that state s has a transition labelled a.

©

Reduce by X — f if s contains the item X — e and
a € FOLLOW(X).

o Thatis, pop |B| symbols from the stack and push X.
Accept if the stack contains S and input token in $.
Report an error if no shift/reduce moves are possible.

© ©

What kind of conflicts are resolved with this trick?

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

55/90

Optimized SLR(1)

Add lookaheads after building LR(0) item sets
Constructing the SLR(1) parsing table:

@ construct the collection of sets of LR(0) items for G’
@ state i of the DFA is constructed from the item set I;
@ [A— aeaP] €l and GOTO(l;,a) =1
= ACTION[i,a] < “shiftj", Va #$
@ A—>aecl,A£S
= ACTION[i,a] < “reduce A — a”, Ya € FOLLOW(A)
@ [—Sef|el;
= ACTION[i,$] + “accept’
@ coto(1;,A) =1
= GOTO[i,A] +j
@ set undefined entries in ACTION and GOTO to “error’
@ initial state of parser sy is CLOSURE([S" — ¢5$])

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

56/90

Example: A grammar that is not LR(0)

10:%—)0%$ T Is : F—)(OE)

—> oL + E—eE+T
1/S — ES E_ oT E—>0T+

2|E — E+T T — el xF T — eTxF
3 T T%.F T-).F
| F — o(id) F — o(id)

41T — TxF F — o(E) F — o(E)
5 | F I :S—Ee$ I;1: E—=Te

. E—Fe+T T — TexF

6|F — (id) L:S— ESe Is: T—TxeF
7 ’ (E) I§:E—>E—|—0T F—>Oé1d>
T — T xF F — o(E

T — oF Iy: T—TxFe

| FoLlow | £ Io:F— (E)e

F— o(E 1 ' E—E+Te

E| +,).$ I4:T%Fo) T S TexF
T| +,%),% Is: F — (id)e I : F — (Ee)
[]

F| +.%).% E—Ee4T

Shift/Reduce Conflicts

What input string will lead you to the state 7; and 1;;?

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

57/90

Example: But it is SLR(1)

state ACTION GOTO

+ * id () $ E T F
0 - — sb5 sb — - 1 7 4
1 s3 - - — — acc - - -
2 — — — — — — — — —
3 - — sb s6 - - - 11 4
4 5 5 - - r5 r5 - - -
5 6 6 - - ré ré - - -
6 - — sb sb6 - - 12 7 4
7 r3 s8 -— — r3 r3 — - -
8 - — sb s6 - - - -9
9 rd r4 — - r4 r4 - - -
10 7 7 - - r7 r7 - - -
11 r2 s8 - - r2 r2 - - -
12 s3 - - — s10 - - - =

Can you have reduce/reduce and shift/reduce conflicts with SLR(1)?

KC Sivaramakrishnan (IIT Madras)

CS3300 - Monsoon 2022

58/90

Example: A grammar that is not SLR(1)

Consider:
S —- L=R
| R
— xR
| (id)
— L

L

R

Its LR(0) item sets:

Iy

I
L

I3 :
142

1S — oS$ Is
S—eL=R

S — eR

L— exR

L — o(id) I¢
R — oL

S~ Se$
:S—Le=R

R— Le I;
S — Re I
L—><1d>0 Iy

:L— xeR
R — oL
L— exR
L — o(id)
:S—L=eR
R — oL
L— exR
L — o(id)
:L — *Re
:R— Le
:S— L=Re

Now consider I: =€ FOLLOW(R) (S=L=R=*R=R)

I, has a shift/reduce conflict.

KC Sivaramakrishnan (IIT Madras)

CS3300 - Monsoon 2022

59/90

Example: A grammar that is not SLR(1)

Consider: Its LR(0) item sets:

S - L—=R Iy: S — eS$ Is:L— xeR

| R S—eL=R R— oL
L — xR S — oR L— exR
| (id) L— exR L — o(id)
R — L L — o(id) IS — L=eR

R — oL R — oL

I1:S —Se$ L—exR

LL:S—Le=R L — e(id)

R — Le I7 : L — *Re

I3:S — Re Ig:R— Le
Iy :L— (id)e Ig:S— L=Re

While parsing xid = id, at the parse state L |= id, the correct option is
to shift.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 60/90

Example: A grammar that is not SLR(1)

Consider: Its LR(0) item sets:
S — L=R In:S" — eS$ Is:L— xeR
| R S—eL=R R — oL
L — xR S — eR L— exR
| (id) L— exR L — o(id)
R — L L — o(id) Is:S—L=eR
R — oL R — oL
I1:S = Se$ L— exR
I:S—Le=R L — o(id)
R— Le I7 : L — *Re
I3:S — Re Ig:R— Le
Iy :L— (id)e Iy:S— L=Re

While parsing id, at the parse state L |, the correct option is to reduce
by R — L.

Note that this is the only string where reduce is the correct option for
item-set I,.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 61/90

LR(k) items

A LR(k) item is a pair [e, B], where

o is a production from G with a e at some position in the RHS,
marking how much of the RHS of a production has already been
seen

B is a lookahead string containing k symbols (terminals or $)

A LR(k) item [A — ace B,w] is valid for a viable prefix yo iff
o there exists a rightmost derivation S =, YAx =, yaBx and
o x=ww (or)xiseand wis $.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 62/90

LR(1) items

Will have the general form [A — a e 3,a]. What's the point of the
lookahead symbols?

Choose correct reduction when there is a choice

o lookaheads are bookkeeping, unless item has e at right end:
o in [A — X eYZ,d], a has no direct use
0 in [A — XYZe,q], a is useful

o For item [A — XYZe,a], we will reduce only if the next input symbol
is a.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 63/90

closure(/)

function closurel (1)
repeat
if [A— aeBB,alel
add [B—ey,b] to I, where berirst(fBa)
until no more items can be added to [
return [

Intuition:
o If [A — ceBf,a] is a valid item for viable prefix S, then
Asgg*SAax£g>5aBﬁam
@ Suppose Bax derives by. Then, for each of the productions of the
form B — v, we have a derivation S 22" §aBby 2% Sayby.
@ This would imply that [B — ey, b] would be a valid item for viable
prefix da for all b € FIRST(Ba). Note FIRST(Ba) = FIRST(Bax).

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 64/90

goto1 (/)

Let 7 be a set of LR(1) items and X be a grammar symbol.
Then, GOTO1(7,X) is the closure of the set of all items
[A— aXef,a] suchthat[A — oeXB,a]l €1

If 1 is the set of valid items for some viable prefix y, then GoTO1(/,X) is
the set of valid items for the viable prefix yX.

goto1(7,X) represents state after recognizing X in state 1.
function gotol (I, X)
let J be the set of items [A— aXef,q]

such that [A— aeXB,a]l el
return closurel (J)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 65/90

Building the LR(1) item sets for grammar G

We start the construction with the item [S" — oS5,$], where

S is the start symbol of the augmented grammar G’
S is the start symbol of G
$ represents EOF

To compute the collection of sets of LR(1) items

function items (G)
50 ¢ closurel({[S' — oS.9]})
C%{So}
repeat
for each set of items se€C
for each grammar symbol X
if gotol(s,X)# ¢ and gotol(s,X)¢&C
add gotol(s,X) to C
until no more item sets can be added to C
return C

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 66/90

Constructing the LR(1) parsing table

Build lookahead into the DFA to begin with

@ construct the collection of sets of LR(1) items for G’
@ state i of the LR(1) machine is constructed from I;
@ [A— aeaP,b] cl;and gotol(l,a)=1;
= ACTION[i,a] < “shiftj”
@ [A— aed el A+S
= ACTION[i,a] < “reduce A — a”
(€) [S/ — SO,$] el;
= ACTION[i, $] « “accept’
@ gotol(l;,A)=1
= GOTO[i,A] <
@ set undefined entries in ACTION and GOTO to “error’
@ initial state of parser sy is closurel([S’ — S,9$])

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 67/90

Back to previous example (¢ SLR(1))

S — L=R Iy
| R
L — xR
| (id)
R — L
I
I4)
I
Iy

1S — oS,

S—eL=R,
S — oR,
L— exR,
L — o(id),
R — ol
L— xR,
L — o(id),

S — Se,
S — Le=R,

R —Le,

1S — Re,
L— xeR,

R— oL,
L— exR,
L — o(id),

|| A A A

R -]

152
I(,:

172
Ig:
: S— L=Re,
1101

Iy

I,
E

L — (id)e,
S— L=eR,
R — ol
L— exR,
L — eo(id),
L — *Re,

R — Le,

R — Le,
L— xeR,
R — ol
L— xR,
L — o(id),
1L — (id)e,
: L — *Re,

I, no longer has shift-reduce conflict: reduce on $, shift on =

KC Sivaramakrishnan (IIT Madras)

CS3300 - Monsoon 2022

&£

A A

68/90

Example: back to SLR(1) expression grammar

In general, LR(1) has many more states than LR(0)/SLR(1):

1S = E 41T — TxF
2|E — E+T 5 | F
3 | T 6| F — (id)
7 | (E)
LR(1) item sets:
Iy: I, - shifting (Iy :shifting (
S — oF, $ F — (eE), x+$ F — (8E), x+)
E— eE+T,+$ E— eE+T,+) E— eE+T,+)
E — oT, +9$ E — oT, +) E — oT, +)
T— eT*F, x+$% T — oT xF, >|<—|—) T — oT+F, x+)
T—eF, x+5$% T—eF, x+) T—eF, x+)
F—e(id), *+$ F%o(id) *+) F— e(id), *+)
F—e(E), *+% F—o(E), *+) F— o(E), *+)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 69/90

Another example

Consider: LR(1) item sets:
0|8 — S Ip:S' —eS, $ I, :C—de, cd
1S — ccC S—eCC, $ Is:S— CCe, $
g ¢ _|> ZC C—ecC, cd Is:C—ceC,$
C—ed, cd C—ecC, $
state| ACTION [GOTO Iy :5"— Se, S C—red, 3
c d $1s C L:S—CeC,$ I;:C—de, $
0 s3s4 — 1 2 C—ecC, $ Is:C — cCe, cd
1 | = — accl— — C—ed, $ Iy:C—cCe, $
2 |lsbs7 — |- 5 I3ZC—>COC7Cd
3 |s3s4 — |- 8 C—ecC, cd
4 11313 - |- - C—ed, cd
5 |=-=rn|- -
6 |s6s7 — |- 9
7 |- - B8|- -
8 [r2r2 — |- -
9 |- — r2|- -

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 70/90

LALR(1) parsing

Define the core of a set of LR(1) items to be the set of LR(0) items
derived by ignoring the lookahead symbols.
Thus, the two sets

Q {[A — 0 Oaz,a], [B — ﬁl Oﬁ27b]}, and

0 {[A—ajeo,c|,[B— Biep,d]}
have the same core.
Key idea:

If two sets of LR(1) items, I; and 1;, have the same core, we

can merge the states that represent them in the ACTION and
GOTO tables.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 71/90

LALR(1) table construction

To construct LALR(1) parsing tables, we can insert a single step into
the LR(1) algorithm

(1.5) For each core present among the set of LR(1) items, find
all sets having that core and replace these sets by their
union.

The goto function must be updated to reflect the
replacement sets.

The resulting algorithm has large space requirements, as we still are
required to build the full set of LR(1) items.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 72/90

LALR(1) table construction

The revised (and renumbered) algorithm

@
@

@

©6

®

construct the collection of sets of LR(1) items for G’
for each core present among the set of LR(1) items, find all sets
having that core and replace these sets by their union (update the
gotol function incrementally)
state i of the LALR(1) machine is constructed from I,.
@ [A— aeaf,b] €l;and gotol(l,a) =1
= ACTION[i,a] < “shift”
@ [A— aed cl,A#S
= ACTION[i,a] < “reduce A — o’
@ [— Se,$] €I = ACTION[;, $] + “accept’
gotol(l;,A) =1; = GOTO[i,A] +j
set undefined entries in ACTION and GOTO to “error’
initial state of parser sy is closurel([S’ — oS,9$])

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 73/90

Example

Reconsider: Ih:S —eS, §
ols — s i%ng, $d
1|s — cc et ¢©
C—ed, cd

21Cc > «C g)
3 | d I]ZS—>SO7 $
L:S—CeC,$
C—ecC, $
C—ed, $

Merged states:
Le: C—ceC,cd$
C — ocC, cd$
C—ed, cd$
147 C— d., cd$
Igg: C — CCC, cd$

Ii:C—ceC,cd Ig:C—ceC,$
C — eocC, cd C—ecC, $
C—ed, cd C—ed, $

I;:C—de, cd I;:C—de, $

Is:S— CCe, $ I3: C—cCe, cd

Iy: C—cCe, $

state] ACTION |GOTO
¢c d $1|§ C
0 |s36s47 — |1 2
1 - — accl— -
2 [s36s47 — |- 5
36 |s36s47 — |— 89
47 |r8 r3 r3|- -
5|1 - = rj}- -
89 |r2 r2 r2|—- -

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

74/90

Question

What can you say about the sizes of the SLR(1) table and the LALR(1)
table for the same grammar?

They are the same!

LR(1) item sets with the same core correspond to a unique LR(0) item
set.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 75/90

Example: LR(1) ltemsets

S —- L=R
| R
L — xR
| (id)
R — L

KC Sivaramakrishnan (IIT Madras)

Iy

1S — oS,

S — Se,
S — Le =R,

1S — Re,
L —xeR,

S—eL =R,
S — oR,
L— exR,
L — o(id),
R— oL,
L— xR,
L — o(id),

|| A A A

R — Le,

Il
T Y Y

R — oL,
L— exR,
L — o(id),

CS3300 - Monsoon 2022

152
I(,:

I,
I3

L — (id)e,
S— L=eR,
R — oL,
L— exR,
L — o(id),

: L — xRe,
: R— Le,
: S— L=Re,
R — Le,
L — xeR,

R— oL,
L— exR,
L — e{id),

1L — (id)e,
: L — *Re,

&

@ P

76/90

Example: LALR(1) ltemsets

S — L=R Iy: S—eS $ Isg2:L— (id)e, =$
| R S—eL=R,$ Is: S—L=eR$
L — %R S—eR, $ R—eL %
| <id> L—exR, = L—exR, %
R o L L—e(id), = L—e(id), $
R — oL, $ I;13:L— xRe, =$
L—exR, §$ Ig10:R— Le, =$
L—e(id), $ Iy: S—L=Re$

I : S’—)SO, $

L: S—Le=RS$

R — Le, $

I: S—Re, $

Iy11:L— xeR, =9$

R — ol =9

L—exR, =35

L—e(id), =9%

Has the same number of states as LR(0) DFA of the grammar

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 77/90

LALR(1) Conflicts

Can we always merge states with the same core? Can it create new

conflicts?
o Merging LR(1) states with the same core cannot create a new
shift/reduce conflict.
o For contradiction, suppose after merging, the state contains items
[A — e a] and [B — B eay,b].
o Then, one of the original states before merging must have the items
[A — ae,a] and [B— B eay,c|, since all original states must have the
same core.
o This indicates a shift-reduce conflict in the original LR(1) state.
o The shift action only depends on the core and not the lookahead.
o Note that merging LR(1) states can create new reduce/reduce
conflicts.
o Example 4.58 in the Dragon Book.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 78/90

LALR(1) Conflicts

Can we always merge states with the same core? Can it create new
conflicts?
@ However, merging LR(1) states can create new reduce/reduce
conflicts.
o For example, consider LR(1) itemsets {[A — ae,a],[B — Be,b]} and
{[A — ae,b],[B— Pe,d]}.
o After merging, the LALR(1) itemset would be
{[A — oe,ab],[B — Pe,ab]}.
o There is a reduce/reduce conflict on both a and b.
o The Dragon Book contains a detailed example illustrating the
above scenario (Section 4.7.4, Example 4.58).

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 79/90

More efficient LALR(1) construction

Observe that we can:

o represent [; by its basis or kernel:
items that are either [S" — oS, 9]
or do not have e at the left of the RHS

o compute shift, reduce and goto actions for state derived from I;
directly from its kernel

This leads to a method that avoids building the complete canonical
collection of sets of LR(1) items

Self reading: Section 4.7.5 Dragon book

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 80/90

Ambiguous Grammars and LR Parsing

Ambiguous grammars are neither LR(k), SLR(k) or LALR(k) for any «.
@ In general, we call a grammar LR(K) if there are no conflicts in any
of the LR(k) item-sets of the grammar. That is, we can parse any
string in the language of the grammar using a LR(k) parser
without encountering any conflicts.
o Similar definitions for SLR(k) and LALR(k).

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 81/90

The role of precedence

Precedence and associativity can be used to resolve shift/reduce
conflicts in ambiguous grammars.

o lookahead with higher precedence = shift

o same precedence, left associative = reduce
Advantages:

@ more concise, albeit ambiguous, grammars

o shallower parse trees = fewer reductions
Classic application: expression grammars

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 82/90

The role of precedence: Example

With precedence and associativity, we can use:
E—E+E|ExE|(E)]| (id) | (num)

This eliminates useless reductions (single productions) but causes
shift/reduce conflicts.

@ In particular, the LR(0) DFA for this grammar will contain a state
withthe items E - E+Ee, E—FEe+E and E — EexE.

o This shift/reduce conflict cannot be resolved by SLR(k), LR(k) or
LALR(K).

@ Since x takes precedence over -+, shift if the next symbol is .
o For enforcing left-associativity, reduce if the next symbol is +.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 83/90

Error recovery in shift-reduce parsers

The problem

@ encounter an error entry in the parsing table for the current state
and next symbol

@ No shift/reduce action defined
Approaches to Syntax Error Recovery, from simple to complex:
@ Panic Mode: Discard tokens until a synchronizing token is found

@ Error Productions: specify in the grammar known common
mistakes

o Automatic local or global correction: try token insertion or
deletions

Parsers typically use a combination of these techniques to handle
different kinds of errors.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 84/90

Panic Mode Recovery

Panic mode error recovery: We want to parse the rest of the file
Restarting the parser

o find a restartable state on the stack
@ move to a consistent place in the input
@ print an informative message to stderr (line number)

Typically, this involves popping from the stack until a state s with GOTO
on non-terminal A is defined KC: where does A come from?. Then,
discard input symbols until « € FOLLOW(A) is found. Resume by
pushing GOTO(s,A) on the stack.

A would be non-terminals representing major program pieces, such as
expression, statement, block.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 85/90

Recovery using Error Productions

o Specify in the grammar known common mistakes.
o Essentially, parse and identify errors for smooth recovery.

o Example:

o Error: The program contains 5x instead of 5 xx.
o Add the production E — EE.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 86/90

Recovery by Automatic Local or Global Correction

@ Find a correct ‘nearby’ program by token insertions or deletions.
o Either by exhaustive search or by the context.
o Example

o For the expression grammar, in the parsing state £ — eF + E, the
next token should be a (id).

o Suppose the next input token is + or x.

o The parser inserts (id) in the input implicitly, by pushing the state
E — Ee+E on the stack.

o For more details, refer to Example 4.68 in the Dragon Book.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 87/90

Left versus right recursion

Right Recursion:

@ needed for termination in
predictive (LL) parsers

@ requires more stack space in
LR parsers

@ right associative operators

Left Recursion:

o works fine in bottom-up (LR)
parsers

o limits required stack space

o left associative operators

Rule of thumb:

@ right recursion for top-down
parsers

o left recursion for bottom-up
parsers

Left recursive grammar:

E— E+T|E
T— TxF|F
F— (E)|Int

After left recursion removal
E— TE
E'— +TF'|e
T— FT
T — *FT'|e
F— (E)|Int

Parse the string3+4 + 5

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

88/90

Parsing review

@ Recursive descent
A recursive descent parser directly encodes a grammar into a
series of mutually recursive procedures.

o LL(k)
An LL(k) parser must be able to recognize the use of a production
after seeing only the first k symbols of its right hand side.

o LR(k)
An LR(k) parser must be able to recognize the occurrence of the
right hand side of a production after having seen all that is derived
from that right hand side with & symbols of lookahead.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 89/90

Grammar hierarchy

LR(k+1) > LR(K)
LR(k) > LALR(k) > SLR(k) > LR(0)
LL(k+1) > LL(K)

LR(k) > LL(k)

© 0 0 o

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 90/90

