KC Sivaramakrishnan

IIT Madras

The role of the parser

tokens
source ____| I
code scanner parser IR
errors
A parser

o performs context-free syntax analysis
@ guides context-sensitive analysis
@ constructs an intermediate representation
@ produces meaningful error messages
o attempts error correction
For the next several classes, we will look at parser construction

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 2/59

Syntax analysis by using a CFG

Context-free syntax is specified with a context-free grammar.
Formally, a CFG G is a 4-tuple (V;,V,,S,P), where:
V, is the set of terminal symbols in the grammar.
For our purposes, V, is the set of tokens returned by the
scanner.

V., the nonterminals, is a set of syntactic variables that

denote sets of (sub)strings occurring in the language.

S is a distinguished nonterminal (S € V,,) denoting the entire
set of strings in L(G).
This is sometimes called a goal symbol.

P is a finite set of productions
Each production must have a single non-terminal on its
left hand side.

The set V. =V,UV, is called the vocabulary of G.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 3/59

Notation and terminology

9 a,b,c,...€eV;

0 ABC,...eV,
ouUVW,...eVvV
° a,pB,y,...€ V¥
o uv,w,...eV/

If A— ythen aAB = ayp is a single-step derivation using A — vy
Similarly, =* and =" denote derivations of >0 and > 1 steps

If §$=* B then B is said to be a sentential form of G

L(G)={we V| S="w}, we L(G) is called a sentence of G

Note, L(G) ={B e V" |S="B}NV/

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 4/59

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).
Example:

1| (goal) := (expr)

g (expr) : |= (expr)(op) (expr)
4 | id

5| (op) = +

6 | -

7 |

8 |/

This describes simple expressions over numbers and identifiers.

In a BNF for a grammar, we represent
@ non-terminals with angle brackets or capital letters
@ terminals with t ypewriter font or underline
@ productions as in the example

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

5/59

Derivations

We can view the productions of a CFG as rewriting rules.

Using our example CFG (for x + 2 * y):

(goal)

R O

(expr)

(expr) (op) (expr)
(id.) (op) {expr)

(id,x) + (expr)

{id.x) + {expr) {op) (expr)
(id,x) 4 (num,2) (op) (expr)
(id,x) + (num,2) * (expr)
(id,x) + (num,2) * (id,y)

We have derived the sentence x + 2 * y.
We denote this (goal)="* id + num * id.

Such a sequence of rewrites is a derivation or a parse.

The process of discovering a derivation is called parsing.

KC Sivaramakrishnan (IIT Madras)

CS3300 - Monsoon 2022

6/59

Derivations

At each step, we chose a non-terminal to replace.
This choice can lead to different derivations.
Two are of particular interest:

leftmost derivation
the leftmost non-terminal is replaced at each step

rightmost derivation
the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

7/59

Rightmost derivation

For the string x + 2 * y:

(goal)

L

Again, (goal)=" id + num * id.

KC Sivaramakrishnan (IIT Madras)

CS3300 - Monsoon 2022

8/59

Precedence

e

<id, x> <num, 2>

Treewalk evaluation computes (x + 2) x y
— the “wrong” answer!
Should be x + (2 * y)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 9/59

Precedence

These two derivations point out a problem with the grammar.
It has no notion of precedence, or implied order of evaluation.

The grammar is ambiguous, as a string in the language can have
multiple parse trees.

Is precedence the only source of ambiguity? Other examples of strings
with multiple parse trees?

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 10/59

Ambiguity - Associativity

The expression a-b—c may be parsed as:
o (a-b)-cor

Q9 a-(b—-c)

In C, assignment = is right-associative. a=b=c may be parsed as:
Q@ a=(b=c) or
Q9 (a=b)=c

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 11/59

Removing Ambiguity

To remove ambiguity, the grammar needs to be modified:

—

q
o
=3

S~
I

(factor)

O 00 3N DN A~ W~
—~
-t
(€]
=
S
~
I | I

This grammar enforces a precedence and associativity on the
derivation:

o terms must be derived from expressions
o forces the “correct” tree

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 12/59

Precedence

Now, for the string x + 2 x y:

(goal)

S

(expr)
(expr) + (term)

(expr) + (term) * (factor)
(expr) + (term) * (id,y)
(expr) + (factor) * (id,y)
(expr) + (num,2) * (id,y)
(term) + (num,2) * (id,y)
(factor) + (num,2) * (id,y)
(id,x) + (num,2) * (id,y)

Again, (goal)="* id + num * id, but this time, we build the desired tree.

KC Sivaramakrishnan (IIT Madras)

CS3300 - Monsoon 2022

13/59

<id,y>

Treewalk evaluation computes x + (2 * y)

Role of CFGs in Compilers

CFGs offer significant advantages for language designers, compiler
developers, and end-users of the compiler:

o A grammar gives a formal, precise, yet easy-to-understand
syntactic specification of the programming languages. Useful for
end-users

o For certain classes of grammars, there are procedures to
automatically construct efficient parsers from the grammar
description. Useful for compiler developers

@ A grammar can reveal syntactic ambiguities and trouble spots.
Useful for language designers

o A grammar imparts structure to a program, which is directly used
for its translation into object code. Useful for compiler developers

@ A grammar allows a language to be evolved iteratively by adding
new constructs. Useful for language designers and compiler
developers

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 15/59

Ambiguity

If a grammar has more than one derivation for a single sentential form,
then it is ambiguous

Example:
(stmt) = if (expr)then (stmt)
| if (expr)then (stmt)else (stmt)
| other

Consider deriving the sentential form:
if E; then if E, then S; else $»

This ambiguity is purely grammatical.
It is a context-free ambiguity.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 16/59

Ambiguity

We would like to parse i f-then-else statements using the following

rule:
match each else with the closest unmatched t hen

Grammar which eliminates the ambiguity by following the above rule:

(stmt) = (matched)
| (unmatched)

(matched) = 1f (expr) then (matched) else (matched)
| other

(unmatched) = 1if (expr) then (stmt)

| if (expr) then (matched) else (unmatched)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 17/59

Ambiguity

Ambiguity is often due to confusion in the context-free specification.
Context-sensitive confusions can arise from overloading.

Example:
a=>b + c

In many languages, + can refer to both integer addition and floating
point addition.

Disambiguating this statement requires context:
@ need values of declarations
@ not context-free
o really an issue of type

Rather than complicate parsing, we will handle this separately.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 18/59

Scanning vs. parsing

Where do we draw the line?

(id) = [a—zA—z|([a—zA—z]|[0—9])"
(num) == 0|[1-9][0—9]*

(op) — w= =[x/

(expr) = (expr)(op)(expr) | (id) | (digit)

Regular expressions are used to classify:

o identifiers, numbers, keywords

o REs are more concise and simpler for tokens than a grammar

o more efficient scanners can be built from REs (DFAs) than
grammars

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

19/59

Scanning vs. parsing

Context-free grammars are used to count:

o brackets: (), begin...end, if...then...else
@ imparting structure

o arithmetic expressions can be described by regular expressions
o but, must deal with precedence and associativity separately ...

Syntactic analysis is complicated enough: grammar for C has around
200 productions.

Factoring out lexical analysis as a separate phase makes compiler
more manageable.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 20/59

Parsing: the big picture

tokens
parser
grammar ——— > parser
generator
code IR

Our goal is a flexible parser generator system

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

21/59

Different ways of parsing: Top-down Vs Bottom-up

Top-down parsers

o start at the root of derivation tree and fill in

@ picks a production and tries to match the input

@ may require backtracking

@ some grammars are backtrack-free (predictive)
Bottom-up parsers

o start at the leaves and fill in

o start in a state valid for legal first tokens

@ as input is consumed, change state to encode possibilities
(recognize valid prefixes)

0 use a stack to store both state and sentential forms

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

22/59

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with
the start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the
parse tree matches the input string

@ At anode labelled A, select a production A — o and construct the
appropriate child for each symbol of o

@ When a terminal is added to the fringe that doesn’t match the
input string, backtrack

@ Find next node to be expanded (must have a label in V)

The key is selecting the right production in step 1.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 23/59

(term) = id|num
o) =+l
(expry == (expr)(op)(term) | (term)

Consider the string x+5.

Immediate Left-recursion

Top-down parsers cannot handle left-recursion in a grammar.

Formally, a grammar is left-recursive if
JA €V, such that A =" Aa for some string o

A grammar is said to be immediate left-recursive if
JA €V, such thatA — Aa for some string o

Our simple expression grammar is immediate left-recursive.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 25/59

Eliminating immediate left-recursion

To remove immediate left-recursion, we can transform the grammar
Consider the grammar fragment:

(foo) == (foo)a
B

where o and f do not start with (foo)
We can rewrite this as:

(foo) = p(bar)
(bar) = oa(bar)

where (bar) is a new non-terminal

This fragment contains no immediate left-recursion

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

26/59

Eliminating immediate left-recursion

In general, if the grammar contains the following production rules:

(A) == (Ao [(Ao | ... [(A)aw [B[B2 |- | Ba
they can be replaced by the following:

(A) == Br(A) [Ba(A) | ... | Bu(A)
(A) = a(A) | (A ... om(A) | &

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 27/59

Example

Consider the simplified expression grammar:

E = E+T|T
T == id|num

After eliminating left-recursion:

E TE'
E == +4TF'|¢e
T == id|num

Looking ahead to drive the choice of productions: x + 5.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 28/59

How much lookahead is needed?

We saw that top-down parsers need to select a production rule at
every step, for which we may have to look ahead in the input string.

Do we need arbitrary lookahead to parse CFGs?
@ in general, yes
o use the Earley or CYK algorithms

Fortunately

o large subclasses of CFGs can be parsed with limited lookahead
@ most programming language constructs can be expressed in a
grammar that falls in these subclasses
Among the interesting subclasses are:
LL(1): left to right scan, left-most derivation, 1-token lookahead;

an
LR(1): left to right scan, reversed right-most derivation, 1-token
lookahead

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

29/59

Recursive descent parsing and Predictive parsing

o If top-down parsing is performed recursively, it is also called
recursive descent parsing.

o To prevent infinite recursion, the grammar should not be
left-recursive.
o In general, may require backtracking if the wrong production rule is
picked.
o Top-down parsing with lookahead which ensures that the correct
production rule is always picked is called predictive parsing.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 30/59

N o o b w2

© @

Recursive descent parsing

A set of procedures, one for each non-terminal.

int A()

begin

foreach production of the form A — X X, X5 - -- X, do
fori=1tokdo

if X; is a non-terminal then

L if (X;() = 0) then

L backtrack; break; // Try the next production
else if X; matches the current input symbol a then
L advance the input to the next symbol;

else
L backtrack; break; // Try the next production

if i=k+1then
L return 1; // Success

return 0; // Failure

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

31/59

Recursive descent parsing

o Backtracks in general — in practise may not do much.

@ How to backtrack?
o A left recursive grammar will lead to infinite loop.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

32/59

Predictive parsing

Basic idea:
@ For any two productions A — o | B, we would like a distinct way of
choosing the correct production to expand.

o For some RHS « € G, define FIRST(«) as the set of tokens that
appear first in some string derived from «.

o Thatis, for some a € V;, a € FIRST(a) iff. a =* ay.
Key property:

@ Whenever two productions A — a and A — 3 both appear in the
grammar, we would like:

o FIRST(a)NFIRST(B) = ¢

@ This would allow the parser to make a correct choice with a
lookahead of only one symbol!

Issue:

o If the grammar has two productions rules of the form
A — of | B, we cannot directly use predictive parsing.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 33/59

Left factoring

Some grammars can be transformed by left-factoring to enable
predictive parsing.

For each non-terminal A find the longest prefix
o common to two or more of its production rules.

if a # € then replace all of the A productions
A—oafilaB| | ap,
with

A— oA’

A" =By | B2l | Ba

where A’ is a new non-terminal.

Repeat until no two alternatives for a single
non-terminal have a common prefix.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 34/59

Example

There are two non-terminals

to left factor:

{expr)

term) -+ (expr)
term) — (expr)
term)

factor) / (term)

(
(
(
(factor) * (term)
(
(

Question: What'’s different
here from the previous
similar grammar that we’ve

seen?

KC Sivaramakrishnan (IIT Madras)

Applying the transformation:

(expr)
{expr’)

(term)
(term’)

CS3300 - Monsoon 2022

(term) (expr’)
+ (expr)
—(expr)

£

(factor) (term’)
*(term)
/(term)

E

35/59

Left-recursion Elimination

o Predictive Parsing is a form of recursive-descent parsing, and
hence cannot handle grammars with left recursion.

o We have seen how to eliminate immediate left-recursion, i.e.
when there is a production rule of the form A — Aa.
o However, left-recursion can also be indirect.
o Example: A — Ba and B — AB.

@ In the general case, A grammar is left-recursive if 3A € V,, such
that A =T Aa for some string «.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 36/59

1

©

o

Indirect Left-recursion Elimination

Given a left-factored CFG, to eliminate left-recursion:

Input: Grammar G with no cycles (no A =* A) and no €
productions.
Output: Equivalent grammar with no left-recursion.
begin
Arrange the non terminals in some order Ay,A;,---Ay;
foreachi=1---ndo
foreachj=1---i—1do

For production p of the form A; — A;y and

Aj— 8118 [8;
Replace the production p by:
Ai = 817|62y] -+ &Y

Eliminate immediate left recursion in A;;

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

37/59

Example

Consider the following grammar:

(S) == (A)alb
(A) == (S)d]|c

It has indirect left recursion: (S) =* (S)da
Grammar after eliminating left recursion:

(S) == (A)a|b
(A) = bd(A)|c(A)
(A) == ad(A)|¢€
KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

38/59

Indirect Left-recursion Elimination Algorithm Analysis

o At the end of ith iteration of the outer loop, the algorithm ensures
that in all productions of the form A; — Ay, i <.

o The algorithm assumes that the grammar has no cycles, i.e.
A =" A is not possible for any non-terminal A.

o Questions to ponder:

o What happens if there are cycles in the input grammar?
o What happens if there are e-productions in the input grammar?

o Does the algorithm work for all context-free languages?

o Yes, it works for all CFL which do not contain €. For any such CFL,
we can always obtain a CFG which does not contain e-productions
and unit-productions.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 39/59

Generality

Question:
By left factoring and eliminating left-recursion, can we trans-
form an arbitrary context-free grammar to a form where it can
be predictively parsed with a single token lookahead?

Answer: No. Example:

{a"0b" |n > 1}U{a"16*" |n> 1}

Must look past an arbitrary number of a’s to discover the 0 or the 1 and
so determine the derivation.

Not all CFG are LL(1).

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 40/59

Non-recursive predictive parsing

Now, a predictive parser looks like:

stack

source tokens | table-driven
— scanner — IR
code parser
parsing
tables

Rather than writing recursive code, we build tables.
Building tables can be automated easily.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 41/59

Table-driven parsers

A parser generator system often looks like:

stack

— IR

source tokens | table-driven
—*1 scanner
code parser
cammar parser parsing
g generator tables

@ We will first look at the information required for generating the

parsing table.

KC Sivaramakrishnan (IIT Madras)

CS3300 - Monsoon 2022

42/59

FIRST

For a string of grammar symbols «, define FIRST(«) as:
o the set of terminals that begin strings derived from «:
{acV,|a="aB}
o If a =* e then € € FIRST()

To build FIRST(X):

@ If X eV, then FIRST(X) is {X}
@ If X — € then add € to FIRST(X)
@ KXV Y, Y
@ Put FIRST(Y;)—{e} in FIRST(X)
@ Vi:l<i<k,ife € FIRST(Y;)N---NFIRST(Y;—1)
(i.e, Y1---Yi 1 =>%¢)
then put FIRST(Y;) — {e} in FIRST(X)
@ If e e FIRST(Y)N---NFIRST(Y) then put € in FIRST(X)
Repeat until no more additions can be made.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

43/59

FOLLOW

For a non-terminal A, define FOLLOW(A) as
the set of terminals that can appear immediately to the right of
A in some sentential form

Thus, a non-terminal’'s FOLLOW set specifies the tokens that can
legally appear after it.

A terminal symbol has no FOLLOW set.

To build FOLLOW(A):
@ Put$in FoLLOW((goal))
@ IfA— aBp:

@ Put FIRST(B) —{e} in FOLLOW(B)

@ IfB=¢(i.e., A— aB)orecFIRST(B) (i.e., B =" €) then put
FOLLOW(A) in FOLLOW(B)

Repeat until no more additions can be made

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 44/59

LL(1) grammars

Previous definition
A grammar G is LL(1) iff. for all non-terminals A, each dis-
tinct pair of productions A — 3 and A — y satisfy the condition

FIRST(B)NFIRST(y) = ¢.

What if € € FIRST(B)?

Consider that the current imput symbol is a. Introduces ambiguity
between choosing:

@ A— B whenac FOLLOW(A)
@ A — ywhen a € FIRST(Y)

Ambiguity is bad because we may need to backtrack — not predictive
parsing anymore!

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 45/59

LL(1) grammars

Revised definition
A grammar G is LL(1) iff. for each set of productions A — o |
o ‘ .. ’ o,
@ FIRST(0y),FIRST(0),...,FIRST(0v,) are all pairwise
disjoint

@ Ifo; =" € then
FIRST(0;) (NFOLLOW(A) = ¢, V1 <j<n,i#].

If G is e-free, condition 1 is sufficient.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

46/59

LL(1) grammars

Provable facts about LL(1) grammars:
@ No left-recursive grammar is LL(1)

o Consider A — Ao | B. Here, FIRST(B) C FIRST(A) (by definition).
Also, FIRST(A) C FIRST(Aax). We know FIRST sets are never empty.
Hence, FIRST(B)NFIRST(Aat) # 0.

@ No ambiguous grammar is LL(1)

@ Some languages have no LL(1) grammar
o Some CFLs are inherently ambiguous i.e., no unambiguous CFGs
exist for that CFL.

@ A grammar which is not LL(1) may be converted into a LL(1)
grammar.
o Consider S — aS | a. Not LL(1) since FIRST(aS) = FIRST(a). Use
left-factoring to get: S — aS’
S'—aS | €
accepts the same language and is LL(1)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 47/59

LL(1) parse table construction

Input: Grammar G
Output: Parsing table M
Method:

@ V productions A — a:

@ Vae€FIRST(a), add A — o to M[A,q]
@ If e e FIRST(0):

@ VbeFOLLOW(A), add A — o to M[A, D]
@ If$ € FOLLOW(A) then add A — « to M[A, $]

@ Set each undefined entry of M to error
If 3M[A,a] with multiple entries then grammar is not LL(1).

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 48/59

Example

Our expression grammar:

1. § —F 6. T —FT
2. E —=TE |17 T — T
3. E —+4E |8 /T
4. —F 9. €
5. € 10. F — num
11. | id
\ [FIRST [FOLLOW [[id [num [+ [—[*[/[$]
S
E
E/
T
TI
F
id
num
B3
/
|

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 49/59

Example: Calculating FIRST

KC Sivaramakrishnan (IIT Madras)

b i

S —FE
E —TE
E —+4E

FIRST(E)
FIRST(T)
{"’_7_78}
FIRST(F)
{x./.€}

{num, id}

CS3300 -

NN N 101010
L
T
n
AA/:'A/-\/-\

Monsoon 2022 50/59

Example: Calculating FIRST

1. S —E |6. T —=FT
2. E —=STE |7. T —+«T
3. E —+4E |8 /T
4. -F 9. €
5. € 10. F — num
11. | id
\ [FIRST JFOLLOW [id[num [+ [—[*[/]9%]
S num, id
E num, id
E e,+,—
T num, id
T’ €,%,/
F num,id
id id —
num num —
* * =
7 -
+ + —

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 51/59

Example: Calculating FOLLOW

S —FE
E —TE
E —+E
—FE
€

DR W=

{$}
FOLLOW(S)
FIRST(E') — {e}
FOLLOW(E)
FOLLOW(E)
FOLLOW(E')
FIRST(1") — {¢}
FOLLOW(T)
FOLLOW(T)
FOLLOW(T")

— = \O 00 1O

NN IN NN IN N IN 1IN 1IN

T —FT
T — T

/T

€
F — num

| id
FOLLOW(S)
FOLLOW(E)
FOLLOW(T)
FOLLOW(E’)
FOLLOW(T)
FOLLOW(E)
FOLLOW(F)
FOLLOW(T’)
FOLLOW(F)
FOLLOW(T)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 52/59

Example: Calculating FOLLOW

1. § —E 6. T —FT
2. E —=STE |7. T —«T
3. EE —4+E|8. /T
4. —FE 9. £
5. € 10. F — num
11. | id
\ [FIRST | FOLLOW [[id[num [+ [—[x[/]9%]
S num, id $
E num,id $
E €,+,— $
T [| num,id| +,—.%
T/ 87*7/ 7_7$
F [numid [+,—%/,%
id id —
num num =
* * =
/ / -
+ + —

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 53/59

Example: Calculating the Parsing Table

1. S —E 6. T —FT
2. E —=STE |7. T —«T
3. EE —4+E|8. /T
4. —FE 9. £
5. € 10. F — num
11. | id
\ [FIRST [FOLLOW [[id[num|[+[— [/19%]
S][num,id $ 1 I [-]— — | =
E | num,id $ 2 2 | —1— — | =
E £,+,— $ — — 314 — 15
T | num,id +,—,% 6 6 |—|— — | =
T £,%,/ +,—,% — — 1919 819
F [numid[+,—x/S$[II [10 [—-[— — | -
id id —
num num =
* * =
/ / -
¥ ¥ —~

KC Sivaramakrishnan (IIT Madras)

CS3300 - Monsoon 2022

54/59

1

12
13
14

Table driven Predictive parsing

Input: A string w and a parsing table M for a grammar G
Output: If wis in L(G), a leftmost derivation of w; otherwise, indicate an
error
push $ onto the stack; push S onto the stack;
let a = first_symbol(w);
X = stack.top();
while X # $ do
if X ==a then
L stack.pop(); let a = next_symbol(w);

else if X is a terminal then
| error();
else if M[X,a] is an error entry then
| error();
else if M[X,a]|=X— Y,Y,---Y; then
output the production X — Y Y, --- ¥;;

stack.pop();
push Y;,Y;_1,--- Yy in that order;

X = stack.top();

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

55/59

A grammar that is not LL(1)

(stmt) = 1if (expr) then (stmt)
| if (expr) then (stmt) else (stmt)
| other
Left-factored: (stmt) := if (expr) then (stmt) (stmt’) | other
(stmt') = else (stmt)|e€
FIRST((stmt’)) = {else,e}
$ € FOLLOW((stmt))
FOLLOW((stmt)) C FOLLOW((stmt’))
FIRST((stmt’)) —{e} C FOLLOW((stmt))

Picking the smallest set that can satisfy the constraints gives us:
FOLLOW((stmt')) = {else,$}

Given (stmt’) =* ¢, LL(1) grammar requires
FIRST(else(stmt)) NFOLLOW((stmt’)) = 0.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

56/59

A grammar that is not LL(1)

Left-factored: (stmt) := if (expr) then (stmt) (stmt’) |other
(stmt') = else (stmt)|e

Picking the smallest set that can satisfy the constraints gives us:
FOLLOW((stmt')) = {else,$}

Given (stmt') =* ¢, LL(1) grammar requires
FIRST(else(stmt)) NFOLLOW((stmt’)) = 0.

But FIRST(else(stmt)) NFOLLOW((stmt')) = {else}

The parsing table entry for M[(stmt’), e1se] will contain both:
o (stmt’) := else(stmt)
o (stmt') =€

Intuitively, prioritise (stmt’) ::= e1se(stmt) to associate else with
closest then.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022

57/59

Another common example

@ Here is a typical example where a programming language fails to
be LL(1):
(stmt) — (assignment) | (call) | (other)
(assignment) — (id) = (expr)
(call) — (id)((expr-list))
@ This grammar is not in a form that can be left factored. We must
first replace assignment and call by the right-hand sides of their
defining productions:

(stmt) — (id) = (expr) | (id)((expr-list)) | (other)
o We left factor:
(stmt) — (id)(stmt’) | (other)
(stmt’) — = (expr) | ({expr-list))
o See how the grammar obscures the language semantics.
o Most of PL syntax cannot be expressed naturally as LL(1) grammar.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 58/59

Error recovery in Predictive Parsing

@ An error is detected when the terminal on top of the stack does
not match the next input symbol or M[A, a] = error.
Panic mode error recovery

@ Skip input symbols till a “synchronizing” token appears.
Q: How to identify a synchronizing token?
Some heuristics:
@ All symbols in FOLLOW(A) in the synchronizing set for the
non-terminal A.
o For example, while parsing id =+ id, after parsing , T will on the
top of the stack. This will lead to error, since M[T,+] is empty.
Since + € FOLLOW(T), we consider + as a synchronizing token. T
will be removed from top of the stack, and parsing can proceed.
@ Semicolon after a Stmt production: assignmentStmt;
assignmentStmt;
o If a terminal on top of the stack cannot be matched? —
o pop the terminal.
o issue a message that the terminal was inserted.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 59/59

