CS3300 - Compiler Design Parsing

KC Sivaramakrishnan

IIT Madras

The role of the parser

A parser

- performs context-free syntax analysis
- guides context-sensitive analysis
- constructs an intermediate representation
- produces meaningful error messages
- attempts error correction

For the next several classes, we will look at parser construction

Syntax analysis by using a CFG

Context-free syntax is specified with a *context-free grammar*. Formally, a CFG *G* is a 4-tuple (V_t, V_n, S, P) , where:

- V_t is the set of *terminal* symbols in the grammar. For our purposes, V_t is the set of tokens returned by the scanner.
- V_n , the *nonterminals*, is a set of syntactic variables that denote sets of (sub)strings occurring in the language.
 - *S* is a distinguished nonterminal $(S \in V_n)$ denoting the entire set of strings in L(G). This is sometimes called a *goal symbol*.
 - *P* is a finite set of *productions* Each production must have a single non-terminal on its left hand side.

The set $V = V_t \cup V_n$ is called the *vocabulary* of *G*.

Notation and terminology

- $a,b,c,\ldots \in V_t$
- $A, B, C, \ldots \in V_n$
- $U, V, W, \ldots \in V$
- $\alpha, \beta, \gamma, \ldots \in V^*$
- $u, v, w, \ldots \in V_t^*$

If $A \to \gamma$ then $\alpha A \beta \Rightarrow \alpha \gamma \beta$ is a *single-step derivation* using $A \to \gamma$

Similarly, \Rightarrow^* and \Rightarrow^+ denote derivations of ≥ 0 and ≥ 1 steps

If $S \Rightarrow^* \beta$ then β is said to be a *sentential form* of *G*

$$L(G) = \{ w \in V_t^* \mid S \Rightarrow^+ w \}, w \in L(G) \text{ is called a sentence of } G$$

Note, $L(G) = \{\beta \in V^* \mid S \Rightarrow^* \beta\} \cap V_t^*$

Syntax analysis

Grammars are often written in Backus-Naur form (BNF). Example:

1	$\langle \text{goal} \rangle$::=	$\langle expr \rangle$
2	(expr)	::=	$\langle expr \rangle \langle op \rangle \langle expr \rangle$
3			num
4			id
5	$\langle \mathrm{op} \rangle$::=	+
6			_
7			*
8			/

This describes simple expressions over numbers and identifiers. In a BNF for a grammar, we represent

- Inon-terminals with angle brackets or capital letters
- 2 terminals with typewriter font or <u>underline</u>
- I productions as in the example

Derivations

We can view the productions of a CFG as rewriting rules. Using our example CFG (for x + 2 * y):

We have derived the sentence x + 2 * y. We denote this $(goal) \Rightarrow^* id + num * id$.

Such a sequence of rewrites is a *derivation* or a *parse*.

The process of discovering a derivation is called *parsing*.

At each step, we chose a non-terminal to replace. This choice can lead to different derivations. Two are of particular interest:

> *leftmost derivation* the leftmost non-terminal is replaced at each step *rightmost derivation* the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

Rightmost derivation

For the string x + 2 * y:

$$\begin{array}{lll} \langle \mathrm{goal} \rangle & \Rightarrow & \langle \mathrm{expr} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle \langle \mathrm{op} \rangle \langle \mathrm{expr} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle \langle \mathrm{op} \rangle \langle \mathrm{id}, \mathrm{y} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle \ast \langle \mathrm{id}, \mathrm{y} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle \langle \mathrm{op} \rangle \langle \mathrm{expr} \rangle \ast \langle \mathrm{id}, \mathrm{y} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle \langle \mathrm{op} \rangle \langle \mathrm{num}, 2 \rangle \ast \langle \mathrm{id}, \mathrm{y} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle + \langle \mathrm{num}, 2 \rangle \ast \langle \mathrm{id}, \mathrm{y} \rangle \\ & \Rightarrow & \langle \mathrm{id}, \mathrm{x} \rangle + \langle \mathrm{num}, 2 \rangle \ast \langle \mathrm{id}, \mathrm{y} \rangle \end{array}$$

Again, $(goal) \Rightarrow^* id + num * id.$

Precedence

Treewalk evaluation computes (x + 2) * y— the "wrong" answer! Should be x + (2 * y) These two derivations point out a problem with the grammar.

It has no notion of precedence, or implied order of evaluation.

The grammar is ambiguous, as a string in the language can have multiple parse trees.

Is precedence the only source of ambiguity? Other examples of strings with multiple parse trees?

The expression a-b-c may be parsed as:

- (a-b)-c **or**
- a-(b-c)

In C, assignment = is right-associative. a=b=c may be parsed as:

- a=(b=c) **Or**
- (a=b)=c

Removing Ambiguity

To remove ambiguity, the grammar needs to be modified:

This grammar enforces a *precedence* and *associativity* on the derivation:

- terms *must* be derived from expressions
- forces the "correct" tree

Precedence

Now, for the string x + 2 * y:

$$\begin{array}{lll} \langle \mathrm{goal} \rangle & \Rightarrow & \langle \mathrm{expr} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle + \langle \mathrm{term} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle + \langle \mathrm{term} \rangle * \langle \mathrm{factor} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle + \langle \mathrm{term} \rangle * \langle \mathrm{id}, \mathrm{y} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle + \langle \mathrm{factor} \rangle * \langle \mathrm{id}, \mathrm{y} \rangle \\ & \Rightarrow & \langle \mathrm{expr} \rangle + \langle \mathrm{num}, 2 \rangle * \langle \mathrm{id}, \mathrm{y} \rangle \\ & \Rightarrow & \langle \mathrm{factor} \rangle + \langle \mathrm{num}, 2 \rangle * \langle \mathrm{id}, \mathrm{y} \rangle \\ & \Rightarrow & \langle \mathrm{id}, \mathrm{x} \rangle + \langle \mathrm{num}, 2 \rangle * \langle \mathrm{id}, \mathrm{y} \rangle \end{array}$$

Again, $(goal) \Rightarrow^* id + num * id$, but this time, we build the desired tree.

Precedence

Treewalk evaluation computes x + (2 * y)

Role of CFGs in Compilers

CFGs offer significant advantages for language designers, compiler developers, and end-users of the compiler:

- A grammar gives a formal, precise, yet easy-to-understand syntactic specification of the programming languages. Useful for end-users
- For certain classes of grammars, there are procedures to automatically construct efficient parsers from the grammar description. Useful for compiler developers
- A grammar can reveal syntactic ambiguities and trouble spots. Useful for language designers
- A grammar imparts structure to a program, which is directly used for its translation into object code. Useful for compiler developers
- A grammar allows a language to be evolved iteratively by adding new constructs. Useful for language designers and compiler developers

If a grammar has more than one derivation for a single sentential form, then it is *ambiguous*

Example:

Consider deriving the sentential form:

if E_1 then if E_2 then S_1 else S_2

This ambiguity is purely grammatical. It is a *context-free* ambiguity. We would like to parse if-then-else statements using the following rule:

match each else with the closest unmatched then

Grammar which eliminates the ambiguity by following the above rule:

Ambiguity

Ambiguity is often due to confusion in the context-free specification.

Context-sensitive confusions can arise from overloading.

Example:

a = b + c

In many languages, + can refer to both integer addition and floating point addition.

Disambiguating this statement requires context:

- need values of declarations
- not context-free
- really an issue of type

Rather than complicate parsing, we will handle this separately.

Where do we draw the line?

$$\begin{array}{lll} \langle id \rangle & ::= & [a - zA - z]([a - zA - z] \mid [0 - 9])^{*} \\ \langle num \rangle & ::= & 0 \mid [1 - 9][0 - 9]^{*} \\ \langle op \rangle & ::= & + \mid - \mid * \mid / \\ \langle expr \rangle & ::= & \langle expr \rangle \langle op \rangle \langle expr \rangle \mid \langle id \rangle \mid \langle digit \rangle \end{array}$$

Regular expressions are used to classify:

- identifiers, numbers, keywords
- REs are more concise and simpler for tokens than a grammar
- more efficient scanners can be built from REs (DFAs) than grammars

Context-free grammars are used to count:

- brackets: (), begin...end, if...then...else
- imparting structure
 - arithmetic expressions can be described by regular expressions
 - but, must deal with precedence and associativity separately ...

Syntactic analysis is complicated enough: grammar for C has around 200 productions.

Factoring out lexical analysis as a separate phase makes compiler more manageable.

Parsing: the big picture

Our goal is a flexible parser generator system

Top-down parsers

- start at the root of derivation tree and fill in
- picks a production and tries to match the input
- may require backtracking
- some grammars are backtrack-free (predictive)

Bottom-up parsers

- start at the leaves and fill in
- start in a state valid for legal first tokens
- as input is consumed, change state to encode possibilities (recognize valid prefixes)
- use a stack to store both state and sentential forms

A top-down parser starts with the root of the parse tree, labelled with the start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse tree matches the input string

- **1** At a node labelled *A*, select a production $A \rightarrow \alpha$ and construct the appropriate child for each symbol of α
- When a terminal is added to the fringe that doesn't match the input string, backtrack
- ③ Find next node to be expanded (must have a label in V_n)

The key is selecting the right production in step 1.

Example

$$\begin{array}{lll} \langle term \rangle & ::= & \text{id} \mid \text{num} \\ \langle op \rangle & ::= & + \mid - \\ \langle expr \rangle & ::= & \langle expr \rangle \langle op \rangle \langle term \rangle \mid \langle term \rangle \end{array}$$

Consider the string x+5.

Top-down parsers cannot handle left-recursion in a grammar.

Formally, a grammar is *left-recursive* if $\exists A \in V_n$ such that $A \Rightarrow^+ A \alpha$ for some string α

A grammar is said to be *immediate left-recursive* if $\exists A \in V_n$ such that $A \rightarrow A\alpha$ for some string α

Our simple expression grammar is immediate left-recursive.

Eliminating immediate left-recursion

To remove immediate left-recursion, we can transform the grammar Consider the grammar fragment:

$$\langle \mathrm{foo} \rangle ::= \langle \mathrm{foo}
angle lpha \ \mid \ eta$$

where α and β do not start with $\langle foo \rangle$ We can rewrite this as:

where $\langle bar \rangle$ is a new non-terminal

This fragment contains no immediate left-recursion

In general, if the grammar contains the following production rules:

$$\langle A \rangle ::= \langle A \rangle \alpha_1 \mid \langle A \rangle \alpha_2 \mid \ldots \mid \langle A \rangle \alpha_m \mid \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

they can be replaced by the following:

$$\begin{array}{ll} \langle \mathbf{A} \rangle & ::= & \beta_1 \langle \mathbf{A}' \rangle \mid \beta_2 \langle \mathbf{A}' \rangle \mid \ldots \mid \beta_n \langle \mathbf{A}' \rangle \\ \langle \mathbf{A}' \rangle & ::= & \alpha_1 \langle \mathbf{A}' \rangle \mid \alpha_2 \langle \mathbf{A}' \rangle \mid \ldots \alpha_m \langle \mathbf{A}' \rangle \mid \varepsilon \end{array}$$

Example

Consider the simplified expression grammar:

$$\begin{array}{rrrr} E & ::= & E+T \mid T \\ T & ::= & \operatorname{id} \mid \operatorname{num} \end{array}$$

After eliminating left-recursion:

$$E ::= TE'$$

$$E' ::= +TE' | \varepsilon$$

$$T ::= id | num$$

Looking ahead to drive the choice of productions: x + 5.

How much lookahead is needed?

We saw that top-down parsers need to select a production rule at every step, for which we may have to look ahead in the input string.

Do we need arbitrary lookahead to parse CFGs?

- in general, yes
- use the Earley or CYK algorithms

Fortunately

- large subclasses of CFGs can be parsed with limited lookahead
- most programming language constructs can be expressed in a grammar that falls in these subclasses

Among the interesting subclasses are:

- LL(1): left to right scan, left-most derivation, **1**-token lookahead; and
- LR(1): left to right scan, reversed right-most derivation, 1-token lookahead

- If top-down parsing is performed recursively, it is also called *recursive descent parsing*.
 - To prevent infinite recursion, the grammar should not be left-recursive.
 - In general, may require backtracking if the wrong production rule is picked.
- Top-down parsing with lookahead which ensures that the correct production rule is always picked is called *predictive parsing*.

A set of procedures, one for each non-terminal.

```
1 int A()
2 begin
       foreach production of the form A \rightarrow X_1 X_2 X_3 \cdots X_k do
3
           for i = 1 to k do
4
                if X<sub>i</sub> is a non-terminal then
5
                    if (X_i) = 0 then
6
                         backtrack; break; // Try the next production
7
                else if X<sub>i</sub> matches the current input symbol a then
8
                    advance the input to the next symbol;
9
                else
10
                    backtrack; break; // Try the next production
11
           if i = k+1 then
12
                return 1; // Success
13
       return 0; // Failure
14
```

- Backtracks in general in practise may not do much.
- How to backtrack?
- A left recursive grammar will lead to infinite loop.

Predictive parsing

Basic idea:

- For any two productions A → α | β, we would like a distinct way of choosing the correct production to expand.
- For some RHS $\alpha \in G$, define FIRST(α) as the set of tokens that appear first in some string derived from α .

• That is, for some $a \in V_t$, $a \in FIRST(\alpha)$ iff. $\alpha \Rightarrow^* a\gamma$.

Key property:

• Whenever two productions $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like:

• FIRST(α) \cap FIRST(β) = ϕ

 This would allow the parser to make a correct choice with a lookahead of only one symbol!

lssue:

- If the grammar has two productions rules of the form
 - $A
 ightarrow lpha eta_1 \mid lpha eta_2$, we cannot directly use predictive parsing.

Some grammars can be transformed by left-factoring to enable predictive parsing.

For each non-terminal A find the longest prefix α common to two or more of its production rules.

if $\alpha \neq \varepsilon$ then replace all of the *A* productions $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_n$ with

 $A \rightarrow \alpha A'$ $A' \rightarrow \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$ where A' is a new non-terminal.

Repeat until no two alternatives for a single non-terminal have a common prefix.

Example

There are two non-terminals to left factor:

$$\begin{array}{lll} \langle expr \rangle & ::= & \langle term \rangle + \langle expr \rangle \\ & | & \langle term \rangle - \langle expr \rangle \\ & | & \langle term \rangle \end{array}$$

Applying the transformation:

Question: What's different here from the previous similar grammar that we've seen?

- Predictive Parsing is a form of recursive-descent parsing, and hence cannot handle grammars with left recursion.
- We have seen how to eliminate immediate left-recursion, i.e. when there is a production rule of the form $A \rightarrow A\alpha$.
- However, left-recursion can also be indirect.
 - Example: $A \rightarrow B\alpha$ and $B \rightarrow A\beta$.

In the general case, A grammar is left-recursive if ∃A ∈ V_n such that A ⇒⁺ Aα for some string α.

Indirect Left-recursion Elimination

Given a left-factored CFG, to eliminate left-recursion:

- **1 Input**: Grammar G with no *cycles* (no $A \Rightarrow^* A$) and no ε productions.
- 2 Output: Equivalent grammar with no left-recursion.

з **begin**

6

7

8 9

0

```
4 Arrange the non terminals in some order A_1, A_2, \dots A_n;
```

```
5 foreach i = 1 \cdots n do
```

```
foreach j = 1 \cdots i - 1 do
```

```
For production p of the form A_i \rightarrow A_j \gamma and
```

```
A_j \rightarrow \delta_1 | \delta_2 | \cdots | \delta_k;
```

Replace the production *p* by:

$$A_i \rightarrow \delta_1 \gamma | \delta_2 \gamma | \cdots \delta_n \gamma;$$

Eliminate immediate left recursion in A_i ;

Example

Consider the following grammar:

$$\begin{array}{lll} \langle \mathbf{S} \rangle & ::= & \langle \mathbf{A} \rangle a \mid b \\ \langle \mathbf{A} \rangle & ::= & \langle \mathbf{S} \rangle d \mid c \end{array}$$

It has indirect left recursion: $\langle S \rangle \Rightarrow^* \langle S \rangle da$ Grammar after eliminating left recursion:

$$\begin{array}{ll} \langle \mathbf{S} \rangle & ::= & \langle \mathbf{A} \rangle a \mid b \\ \langle \mathbf{A} \rangle & ::= & bd \langle \mathbf{A}^{\prime} \rangle \mid c \langle \mathbf{A}^{\prime} \rangle \\ \langle \mathbf{A}^{\prime} \rangle & ::= & ad \langle \mathbf{A}^{\prime} \rangle \mid \varepsilon \end{array}$$

Indirect Left-recursion Elimination Algorithm Analysis

- At the end of *i*th iteration of the outer loop, the algorithm ensures that in all productions of the form A_i → A_jγ, i < j.
- The algorithm assumes that the grammar has no cycles, i.e. $A \Rightarrow^* A$ is not possible for any non-terminal *A*.
- Questions to ponder:
 - What happens if there are cycles in the input grammar?
 - What happens if there are ε-productions in the input grammar?
- Does the algorithm work for all context-free languages?
 - Yes, it works for all CFL which do not contain ε. For any such CFL, we can always obtain a CFG which does not contain ε-productions and unit-productions.

Question:

By left factoring and eliminating left-recursion, can we transform an arbitrary context-free grammar to a form where it can be predictively parsed with a single token lookahead?

Answer: No. Example:

```
\{a^n 0b^n \mid n \ge 1\} \cup \{a^n 1b^{2n} \mid n \ge 1\}
```

Must look past an arbitrary number of *a*'s to discover the 0 or the 1 and so determine the derivation.

```
Not all CFG are LL(1).
```

Non-recursive predictive parsing

Now, a predictive parser looks like:

Rather than writing recursive code, we build tables. *Building tables can be automated easily.*

Table-driven parsers

A parser generator system often looks like:

• We will first look at the information required for generating the parsing table.

FIRST

For a string of grammar symbols α , define FIRST(α) as:

- the set of terminals that begin strings derived from α : { $a \in V_t \mid \alpha \Rightarrow^* a\beta$ }
- If $\alpha \Rightarrow^* \varepsilon$ then $\varepsilon \in \text{FIRST}(\alpha)$

To build FIRST(X):

- 1) If $X \in V_t$ then FIRST(X) is $\{X\}$
- 2 If $X \to \varepsilon$ then add ε to FIRST(X)

$$If X \to Y_1 Y_2 \cdots Y_k:$$

- **1** Put FIRST $(Y_1) {\varepsilon}$ in FIRST(X)
- 2 $\forall i : 1 < i \leq k$, if $\varepsilon \in \mathsf{FIRST}(Y_1) \cap \cdots \cap \mathsf{FIRST}(Y_{i-1})$ (i.e., $Y_1 \cdots Y_{i-1} \Rightarrow^* \varepsilon$) then put $\mathsf{FIRST}(Y_i) - \{\varepsilon\}$ in $\mathsf{FIRST}(X)$
- 3 If $\varepsilon \in \text{FIRST}(Y_1) \cap \cdots \cap \text{FIRST}(Y_k)$ then put ε in FIRST(X)Repeat until no more additions can be made.

FOLLOW

For a non-terminal *A*, define FOLLOW(*A*) as the set of terminals that can appear immediately to the right of *A* in some sentential form

Thus, a non-terminal's FOLLOW set specifies the tokens that can legally appear after it.

A terminal symbol has no FOLLOW set.

To build FOLLOW(A):

- 1 Put \$ in FOLLOW($\langle goal \rangle$)
- (2) If $A \rightarrow \alpha B \beta$:
 - **1** Put FIRST(β) { ε } in FOLLOW(B)
 - 2 If $\beta = \varepsilon$ (i.e., $A \rightarrow \alpha B$) or $\varepsilon \in \text{FIRST}(\beta)$ (i.e., $\beta \Rightarrow^* \varepsilon$) then put FOLLOW(*A*) in FOLLOW(*B*)

Repeat until no more additions can be made

LL(1) grammars

Previous definition A grammar G is LL(1) iff. for all non-terminals A, each distinct pair of productions $A \rightarrow \beta$ and $A \rightarrow \gamma$ satisfy the condition FIRST(β) \cap FIRST(γ) = ϕ .

What if $\varepsilon \in \text{FIRST}(\beta)$?

Consider that the current imput symbol is *a*. Introduces ambiguity between choosing:

- $A \rightarrow \beta$ when $a \in \text{FOLLOW}(A)$
- $A \rightarrow \gamma$ when $a \in \mathsf{FIRST}(\gamma)$

Ambiguity is bad because we may need to backtrack – not predictive parsing anymore!

LL(1) grammars

Revised definition

A grammar *G* is LL(1) iff. for each set of productions $A \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$:

- IFIRST(α₁), FIRST(α₂),..., FIRST(α_n) are all pairwise disjoint
- 2 If $\alpha_i \Rightarrow^* \varepsilon$ then FIRST $(\alpha_j) \cap$ FOLLOW $(A) = \phi, \forall 1 \le j \le n, i \ne j$.

If G is ε -free, condition 1 is sufficient.

LL(1) grammars

Provable facts about LL(1) grammars:

1 No left-recursive grammar is LL(1)

- Consider $A \to A\alpha \mid \beta$. Here, FIRST $(\beta) \subseteq$ FIRST(A) (by definition). Also, FIRST $(A) \subseteq$ FIRST $(A\alpha)$. We know FIRST sets are never empty. Hence, FIRST $(\beta) \cap$ FIRST $(A\alpha) \neq \emptyset$.
- ② No ambiguous grammar is LL(1)
- Some languages have no LL(1) grammar
 - Some CFLs are inherently ambiguous i.e., no unambiguous CFGs exist for that CFL.
- A grammar which is not LL(1) may be converted into a LL(1) grammar.
 - Consider $S \rightarrow aS \mid a$. Not LL(1) since FIRST(aS) = FIRST(a). Use left-factoring to get: $S \rightarrow aS'$

$$S' \to aS' \mid \varepsilon$$

accepts the same language and is LL(1)

Input: Grammar G Output: Parsing table M Method:

- 1) \forall productions $A \rightarrow \alpha$:
 - (1) $\forall a \in \text{FIRST}(\alpha)$, add $A \to \alpha$ to M[A, a]
 - 2 If $\varepsilon \in \text{FIRST}(\alpha)$:
 - (1) $\forall b \in FOLLOW(A)$, add $A \rightarrow \alpha$ to M[A, b]
 - 2 If $\$ \in FOLLOW(A)$ then add $A \to \alpha$ to M[A,\$]
- Set each undefined entry of M to error
- If $\exists M[A,a]$ with multiple entries then grammar is not LL(1).

Example

Our expression grammar:

KC Sivaramakrishnan (IIT Madras)

Example: Calculating FIRST

1.
$$S \rightarrow E$$
 | 6. $T \rightarrow FT'$
2. $E \rightarrow TE'$ | 7. $T' \rightarrow *T$
3. $E' \rightarrow +E$ | 8. | /T
4. | $-E$ | ε | 10. $F \rightarrow num$
11. | id
FIRST(E) \subseteq FIRST(S)
FIRST(T) \subseteq FIRST(E)
 $\{+, -, \varepsilon\} \subseteq$ FIRST(E)
 $\{*, /, \varepsilon\} \subseteq$ FIRST(T)
 $\{num, id\} \subseteq$ FIRST(F)

Example: Calculating FIRST

	FIRST	FOLLOW	id	num	+	—	*	\$
S	num,id							
E	num,id							
E'	$\epsilon, +, -$							
T	num,id							
T'	$\epsilon, *, /$							
F	num,id							
id	id	_						
num	num	—						
*	*	—						
		—						
+	+	—						
—	-	—						

Example: Calculating FOLLOW

 $\mathsf{FOLLOW}(T) \subseteq \mathsf{FOLLOW}(F)$ $\mathsf{FOLLOW}(T') \subseteq \mathsf{FOLLOW}(T)$

Example: Calculating FOLLOW

	FIRST	FOLLOW	id	num	+	—	*	/	\$
S	num,id	\$							
E	num,id	\$							
E'	$\epsilon, +, -$	\$							
T	num,id	+, -, \$							
T'	$\epsilon, *, /$	+, -,							
F	num,id	+,-,*,/,\$							
id	id	—							
num	num	—							
*	*	—							
		—							
+	+	—							
—	-	—							

KC Sivaramakrishnan (IIT Madras)

Example: Calculating the Parsing Table

	FIRST	FOLLOW	id	num	+	—	*		\$
S	num,id	\$	1	1	—	_	—	—	_
E	num,id	\$	2	2	—	—	—	—	—
E'	$\epsilon, +, -$	\$	—	_	3	4	_	—	5
T	num,id	+, -, \$	6	6	—	_	_	—	—
T'	$\epsilon, *, /$	+, -,	-	_	9	9	7	8	9
F	num,id	+,-,*,/,\$	11	10	—	_	_	—	—
id	id	—							
num	num	—							
*	*	—]						
		—							
+	+	_							
_	—	—]						

Table driven Predictive parsing

Input: A string w and a parsing table M for a grammar G**Output:** If w is in L(G), a leftmost derivation of w; otherwise, indicate an error

- 1 push \$ onto the stack; push *S* onto the stack;
- 2 **let** $a = \text{first}_symbol(w);$
- 3 X = stack.top();
- 4 while $X \neq$ \$ do

6

13

15

```
5 if X == a then
```

```
stack.pop(); let a = next_symbol(w);
```

```
r else if X is a terminal then
error();
```

```
9 else if M[X,a] is an error entry then
10 error();
```

```
else if M[X,a] = X \rightarrow Y_1 Y_2 \cdots Y_k then
output the production X \rightarrow Y_1 Y_2 \cdots
```

```
output the production X \rightarrow Y_1 Y_2 \cdots Y_k;
stack.pop();
```

```
14 push Y_k, Y_{k-1}, \cdots Y_1 in that order;
```

```
X = stack.top();
```

A grammar that is not LL(1)

 $\begin{array}{rcl} \mbox{Left-factored:} & \langle stmt \rangle & ::= & \mbox{if} \langle expr \rangle \mbox{then} \langle stmt \rangle \ | \mbox{other} \\ & \langle stmt' \rangle & ::= & \mbox{else} \langle stmt \rangle \ | \ \ensuremath{\mathcal{E}} \end{array}$

Picking the smallest set that can satisfy the constraints gives us: FOLLOW($\langle stmt' \rangle) ~=~ \{ \texttt{else}, \$ \}$

Given $\langle \operatorname{stmt'} \rangle \Rightarrow^* \varepsilon$, LL(1) grammar requires FIRST(else $\langle \operatorname{stmt} \rangle$) \cap FOLLOW($\langle \operatorname{stmt'} \rangle$) = \emptyset .

A grammar that is not LL(1)

 $\begin{array}{rcl} \mbox{Left-factored:} & \langle stmt \rangle & ::= & \mbox{if} \langle expr \rangle \mbox{then} \langle stmt \rangle \ | \mbox{other} \\ & \langle stmt' \rangle & ::= & \mbox{else} \langle stmt \rangle \ | \ \ensuremath{\mathcal{E}} \end{array}$

Picking the smallest set that can satisfy the constraints gives us: FOLLOW($\langle stmt' \rangle$) = {else,\$}

Given $\langle \operatorname{stmt'} \rangle \Rightarrow^* \varepsilon$, LL(1) grammar requires FIRST($\operatorname{else}\langle \operatorname{stmt} \rangle$) \cap FOLLOW($\langle \operatorname{stmt'} \rangle$) = \emptyset .

But FIRST(else(stmt)) \cap FOLLOW((stmt')) = {else}

The parsing table entry for $M[\langle stmt' \rangle, else]$ will contain both:

- $\langle stmt' \rangle ::= else \langle stmt \rangle$
- $\langle \text{stmt'} \rangle ::= \varepsilon$

Intuitively, prioritise $\langle stmt'\rangle::=\texttt{else}\langle stmt\rangle$ to associate <code>else</code> with closest then.

Another common example

 Here is a typical example where a programming language fails to be LL(1):

$$\begin{array}{rcl} \langle stmt \rangle & \rightarrow & \langle assignment \rangle \mid \langle call \rangle \mid \langle other \rangle \\ \langle assignment \rangle & \rightarrow & \langle id \rangle = \langle expr \rangle \\ \langle call \rangle & \rightarrow & \langle id \rangle (\langle expr-list \rangle) \end{array}$$

 This grammar is not in a form that can be left factored. We must first replace assignment and call by the right-hand sides of their defining productions:

$$\langle \text{stmt} \rangle \rightarrow \langle \text{id} \rangle = \langle \text{expr} \rangle \mid \langle \text{id} \rangle (\langle \text{expr-list} \rangle) \mid \langle \text{other} \rangle$$

We left factor:

$$\begin{array}{ll} \langle \text{stmt} \rangle & \rightarrow & \langle \text{id} \rangle \langle \text{stmt'} \rangle \mid \langle \text{other} \rangle \\ \langle \text{stmt'} \rangle & \rightarrow & = \langle \text{expr} \rangle \mid (\langle \text{expr-list} \rangle) \end{array}$$

See how the grammar obscures the language semantics.
 Most of PL syntax cannot be expressed naturally as LL(1) grammar.

Error recovery in Predictive Parsing

• An error is detected when the terminal on top of the stack does not match the next input symbol or M[A, a] = error.

Panic mode error recovery

- Skip input symbols till a "synchronizing" token appears.
- Q: How to identify a synchronizing token?

Some heuristics:

- All symbols in FOLLOW(*A*) in the synchronizing set for the non-terminal *A*.
 - For example, while parsing id \star + id, after parsing \star , *T* will on the top of the stack. This will lead to error, since M[T,+] is empty. Since $+ \in FOLLOW(T)$, we consider + as a synchronizing token. *T* will be removed from top of the stack, and parsing can proceed.
- Semicolon after a Stmt production: assignmentStmt; assignmentStmt;
- If a terminal on top of the stack cannot be matched?
 - pop the terminal.
 - issue a message that the terminal was inserted.