
CS3300 - Compiler Design
Lexical Analysis

KC Sivaramakrishnan

IIT Madras

Lexical analysis

Also known as scanning.
Reads a stream of characters and groups them into meaningful
sequences, called lexemes.
Eliminates white space

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 2 / 24

Lexical analysis - Example

Consider the following program snippet:

if (i==j)
z=0;

else
z=1;

The program is just a string of characters:
\tif (i==j)\n\t\tz=0;\n\n\telse\n\t\tz=1;

The goal of lexical analysis is to take the above string as input and
partition it into substrings.
Each substring will correspond to a token.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 3 / 24

What is a Token?

A syntactic category
In English: noun, verb, adjective, ...
In a programming language: Identifier, Constant, Keyword,
Whitespace, ...

Each token corresponds to a set of strings, which is described
using a pattern.
A string which matches the pattern of a token is called a lexeme.
Lexical Analyzer produces a stream of tokens, along with relevant
attribute-values for each token.

This stream is then sent as input to the parser.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 4 / 24

Tokens

For each lexeme, the lexical analyzer produces an output of the
form:
⟨token-type, attribute-values⟩
Example token-types: identifier, number, string, operator and . . .
Example attribute-types: token index, token-value, line and
column number and . . .
Example:

position = initial + rate * 60
For a typical language like C/Java the following lexemes and their
values can be identified:

lexeme token
position ⟨id, position⟩
= ⟨op, =⟩
initial ⟨id, initial⟩

lexeme token
+ ⟨op, +⟩
rate ⟨id, rate⟩
* ⟨op, *⟩
60 ⟨num, 60⟩

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 5 / 24

Specifying patterns

A lexical analyzer must recognize the units of syntax
identifiers
an alphabet followed by any number of alphanumerics
numbers

integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer ’.’ digits from 0-9
reals: (integer or decimal) ’E’ (+ or -) digits from 0-9

We need a powerful notation to specify these patterns

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 6 / 24

Regular Expressions

Patterns are often specified as regular languages
Notations used to describe a regular language include both regular
expressions and regular grammars
Regular expressions (over an alphabet Σ):

1 ε is a RE denoting the set {ε}
2 if a ∈ Σ, then a is a RE denoting {a}
3 if r and s are REs, denoting L(r) and L(s), then:

r is a RE denoting L(r)
r | s is a RE denoting L(r)

⋃
L(s)

rs is a RE denoting L(r)L(s)
r∗ is a RE denoting L(r)∗

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 7 / 24

Exercise

float square(float x){
return x*x;

}

Perform lexical analysis for the above function. Determine the stream
of tokens that the lexical analyzer would return.

What would be an example of an error caught by the lexical analyzer?

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 8 / 24

Errors caught by lexer

Unterminated strings – " without a matching "

Unterminate comments – /* but no matching */

Exceeding identifier or numeric constant length
Illegal characters – α,β , . . . and other unicode characters

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 9 / 24

Examples of Regular Expressions

identifier
letter → (a | b | c | ... | z | A | B | C | ... | Z)
digit → (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)
id → letter (letter | digit)∗

numbers
integer → (+ | − | ε) (0 | (1 | 2 | 3 | ... | 9) digit∗)
decimal → integer . digit digit ∗

real → (integer | decimal) E (+ | −) digit digit∗

Most tokens can be described with REs
We can use REs to build lexical analyzers automatically

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 10 / 24

New Notation in REs

identifier
letter → [a− zA−Z]
digit → [0−9]
id → letter (letter | digit)∗

numbers
integer → [+−]? (0 | [1−9] digit∗)
decimal → integer . digit +

real → (integer | decimal) E [+−] digit+

[a1a2 . . .an] for a1 | a2 | . . . | an

r+ for rr∗ (one or more occurences)
r? for r | ε (zero or one occurence)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 11 / 24

Recognizers

From a regular expression we can construct a
deterministic finite automaton (DFA)

Recognizer for identifier:

0 21

3

digit

other

letter

digit

letter

other

error

accept

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 12 / 24

Code for the recognizer

Given an automata, can we write a recognizer for a token?

ch=nextChar();
state=0; // initial state
done=false;
tokenVal=""// empty
while (not done) {
class=charClass[ch];
state=

nextState[class,state];

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 13 / 24

Tables for the recognizer

Two tables control the recognizer

charClass:
char a− z A−Z 0−9 other
class letter letter digit other

nextState:

0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

0 21

3

digit

other

letter

digit

letter

other

error

accept

Question: How can you imple-
ment the charClass table?

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 14 / 24

Code for the recognizer

Given an automata, can we write a recognizer for a token?

ch=nextChar();
state=0; // initial state
done=false;
tokenVal=""// empty
while (not done) {
class=charClass[ch];
state=

nextState[class,state];
switch(state) {
case 1:

tokenVal=tokenVal+ch;
char=nextChar();
break;

case 2: // accept state
tokenType=id;
done = true;
break;

case 3: // error
tokenType=error;
done=true;
break;

} // end switch
} // end while
return tokenType;

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 15 / 24

Tables for the recognizer

Two tables control the recognizer

charClass:
char a− z A−Z 0−9 other
class letter letter digit other

nextState:

0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 16 / 24

To summarize

1 Write a regular expression for each token type in the programming
language. Let R1, . . . ,Rk be the regular expressions.

2 Let the input be x1x2 . . .xn
For 1 ≤ i ≤ n, for 1 ≤ j ≤ k, check if x1x2 . . .xi ∈ L(Rj)

We can run the recognizers for all the tokens (possibly in parallel)
on the input string.

3 If yes, then we have found that x1 . . .xi has token-type j.
4 Remove x1 . . .xi from input and go to step (2).

What are the issues with this algorithm?

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 17 / 24

Ambiguities in the Algorithm - I

How much input to be used if multiple prefixes match the pattern?
x1 . . .xi1 ∈ L(Rj)
x1 . . .xi2 ∈ L(Rj)

Examples
5, 5.12, 5.12E−10 all match the pattern for the token number.
The string <= matches the token for relational operators with value
LE or two tokens with values LT and EQ.

The “maximal munch” rule: Pick the longest possible prefix which
matches any pattern.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 18 / 24

Rule in action

Transition diagram for picking
the longest matching prefix for
relational operations

start 0 1 2 return (relop, LE)

3 return (relop, NE)

4 ∗return (relop, LT)

5 return (relop, EQ)

6 7 return (relop, GE)

8 ∗return (relop, GT)

< =

>

other

=

>

=

other

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 19 / 24

Lookahead

Note that in the previous example, we have to scan one symbol
beyond the current lexeme to determine that the current lexeme
matches the pattern.

Thus, for relational operators, the ‘lookahead’ parameter is 1.

What is the lookahead for identifiers? For digits?
Generally the lookahead is 1 for most tokens in modern
programming languages.
However, it could also be arbitrarily long. For example, in
FORTRAN, keywords are not reserved words.

Hence, we could have statement such as IF(I,J) = 3, where IF
is an array. But then, how to distinguish this from
IF(condition) THEN ...?

We must lookahead beyond the closing parenthesis for a THEN.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 20 / 24

Ambiguities in the Algorithm - II

What happens if a prefix matches the pattern of multiple tokens?
x1 . . .xi ∈ L(Rj1)
x1 . . .xi ∈ L(Rj2)

Example
then matches the pattern for keyword then and identifier id
We generally assume that keywords are reserved, and hence then
must be matched to the token for keyword then.

Two ways to resolve this problem:
We can recognize the lexeme as an identifier, and then include a
separate check for whether the value of the identifier matches a
keyword, in which case we change the token to the keyword.
We recognize the lexeme as both keyword and identifier, but have a
total ordering among tokens to decide the winner in case of a tie (in
the above case, it would be keyword).

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 21 / 24

Error recovery

It is hard to tell (without the aid of other components), if there is a
source code error.
For example:
fi (a == f(x))
If fi a misspelling for “if”, or a function identifier?
Since fi is a valid lexeme for the token id, the lexer must return
the token ⟨id, fi⟩.
A later phase (parser or semantic analyzer) may be able to catch
the error.

Recovery (if the lexer is unable to proceed, that is):
Panic and stop!
Delete one character!
Many other one character related fixes (for example, trying a
different character in place of the input)
In any case, it is desirable to for the lexer to not get stuck, identify
the error and possibly proceed with the rest of the program.

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 22 / 24

Limits of regular languages

Not all languages are regular
One cannot construct DFAs to recognize these languages:

L = {pkqk}
L = {wcwr | w ∈ Σ∗}

Note: neither of these is a regular expression!
(DFAs cannot count!)
But, this is a little subtle. One can construct DFAs for:

alternating 0’s and 1’s
(ε | 1)(01)∗ (ε | 0)

sets of pairs of 0’s and 1’s
(01 | 10)+

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 23 / 24

Automatic construction

Lexical Analyzer generators automatically construct code from RE-like
descriptions

construct a DFA
use state minimization techniques
emit code for the lexical analyzer
(table driven or direct code)

lex/flex is a lexical analyzer generator
Takes a specification of all the patterns as a RE.
emits C code for scanner
provides macro definitions for each token
(used in the parser)

KC Sivaramakrishnan (IIT Madras) CS3300 - Monsoon 2022 24 / 24

