
14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 1/15

Lambda Calculus : Syntax

CS3100 Fall 2019

Review

Last time
Higher Order Functions

Today
Lambda Calculus: Basis of FP!

Origin, Syntax, substitution, alpha equivalence

Computability

In 1930s
What does it mean for the function to be computable?
Informal definition: A function is computable if using pencil-and-paper you can compute

 for any .
Three different researchers attempted to formalise computability.

Alan Turning

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 2/15

Defined an idealised computer -- The Turing Machine (1935)
A function is computable if and only if it can be computed by a
turning machine
A programming language is turing complete if:

It can map every turing machine to a program.
A program can be written to emulate a turing machine.
It is a superset of a known turning complete language.

Developed the λ-calculus as a formal system for mathematical
logic (1929 - 1932).
Postulated that a function is computable (in the intuitive sense) if
and only if it can be written as a lambda term (1935).

Alonzo Church

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 3/15

Church was Turing's PhD advisor!
Turing showed that the systems defined by Church and his system
were equivalent.

Church-Turing Thesis

Defined the class of general recursive functions as the smallest
set of functions containing

all the constant functions
the successor function and
closed under certain operations (such as compositions and
recursion).

He postulated that a function is computable (in the intuitive sense)
if and only if it is general recursive.

Kurt Gödel

Impact of Church-Turing thesis
The “Church-Turing Thesis” is by itself is one of the most important ideas on computer
science

The impact of Church and Turing’s models goes far beyond the thesis itself.

Impact of Church-Turing thesis
Oddly, however, the impact of each has been in almost completely separate communities

Turing Machines Algorithms & Complexity

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 4/15

Lambda Calculus Programming Languages
Not accidental

Turing machines are quite low level well suited for measuring resources
(efficiency).
Lambda Calculus is quite high level well suited for abstraction and composition
(structure).

Programming Language Expressiveness
So what language features are needed to express all computable functions?

What's the minimal language that is Turing Complete?
Observe that many features that we have seen in this class were syntactic sugar

Multi-argument functions - simulate using partial application
For loop, while loop - simulate using recursive functions
Mutable heaps - simulate using functional maps and pass around.

Functional Heap

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 5/15

In [1]:

Functional Heap

Findlib has been successfully loaded. Additional directive

s:

 #require "package";; to load a package

 #list;; to list the available packages

 #camlp4o;; to load camlp4 (standard synta

x)

 #camlp4r;; to load camlp4 (revised syntax)

 #predicates "p,q,...";; to set these predicates

 Topfind.reset();; to force that packages will be

reloaded

 #thread;; to enable threads

Out[1]:

type ('k, 'v) heap = 'k -> 'v option

Out[1]:

val empty_heap : ('k, 'v) heap = <fun>

Out[1]:

val set : ('k, 'v) heap -> 'k -> 'v -> ('k, 'v) heap = <fun

>

Out[1]:

val get : ('k, 'v) heap -> 'k -> 'v option = <fun>

type ('k,'v) heap = 'k -> 'v option

let empty_heap : ('k,'v) heap = fun k -> None

let set (h : ('k,'v) heap) (x : 'k) (v : 'v) : ('k,'v) heap =
 fun k -> if k = x then Some v else h k

let get (h : ('k,'v) heap) (x : 'k) : 'v option = h x

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 6/15

In [2]:

You can imagine passing around the heap as an implicit extra argument to every
function.

The issue of storing values of different types, default values, etc. can be orthogonally
addressed.

All you need is Love Functions.

Lambda Calculus : Syntax

This grammar describes ASTs; not for parsing (ambiguous!)
Lambda expressions also known as lambda terms

 is like fun x -> e

That's it! Nothing but higher order functions

Why Study Lambda Calculus?
It is a "core" language

Very small but still Turing complete
But with it can explore general ideas

Language features, semantics, proof systems, algorithms, ...
Plus, higher-order, anonymous functions (aka lambdas) are now very popular!

Out[2]:

- : int option * int option * int option = (Some 0, Some 1,

None)

let _ =
 let h = set empty_heap "a" 0 in
 let h = set h "b" 1 in
 (get h "a", get h "b", get h "c")

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 7/15

C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi (since 2009), Objective C, Java 8,
Swift, Python, Ruby (Procs), ...
and functional languages like OCaml, Haskell, F#, ...

Three Conventions
1. Scope of extends as far right as possible

Subject to scope delimited by parentheses
 is the same as

2. Function Application is left-associative
x y z is (x y) z

Same rule as OCaml

3. As a convenience, we use the following syntactic sugar for local declarations
let x = e1 in e2 is short for .

Lambda calculus interpreter in OCaml
In Assignment 2, you will be implementing a lambda calculus interpreter in OCaml.
What is the Abstract Syntax Tree (AST)?

type expr =
 | Var of string
 | Lam of string * expr
 | App of expr * expr

Lambda expressions in OCaml
 is Var "y"

 is Lam ("x", Var "x")
 is Lam ("x",(Lam("y",App (Var "x", Var "y"))))

 is

App

 (Lam ("x", Lam ("y",App (Var "x", Var "y"))),

 Lam ("x", App (Var "x", Var "x")))

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 8/15

In [3]:

In [4]:

Quiz 1
 and are equivalent.

1. True
2. False

Quiz 1
 and are equivalent.

1. True

val parse : string -> Syntax.expr = <fun>

val free_variables : string -> Eval.SS.elt list = <fun>

val substitute : string -> string -> string -> string = <fu

n>

Out[4]:

- : Syntax.expr = Var "y"

Out[4]:

- : Syntax.expr = Lam ("x", Var "x")

Out[4]:

- : Syntax.expr = Lam ("x", Lam ("y", App (Var "x", Var

"y")))

Out[4]:

- : Syntax.expr =

App (Lam ("x", Lam ("y", App (Var "x", Var "y"))),

 Lam ("x", App (Var "x", Var "x")))

#use "init.ml";;

parse "y";;

parse "\\x.x";;

parse "\\x.\\y.x y";;

parse "(\\x.\\y.x y) \\x. x x";;

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 9/15

2. False

Quiz 2
What is this term’s AST?

1. App (Lam ("x", Var "x"), Var "x")
2. Lam (Var "x", Var "x", Var "x")
3. Lam ("x", App (Var "x", Var "x"))
4. App (Lam ("x", App ("x", "x")))

Quiz 2
What is this term’s AST?

1. App (Lam ("x", Var "x"), Var "x")
2. Lam (Var "x", Var "x", Var "x")
3. Lam ("x", App (Var "x", Var "x"))
4. App (Lam ("x", App ("x", "x")))

Quiz 3
This term is equivalent to which of the following?

1.
2.
3.
4.

Quiz 3
This term is equivalent to which of the following?

1.
2.

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 10/15

3.
4.

Free Variables
In

λx. x y

The first x is the binder.
The second x is a bound variable.
The y is a free variable.

Free Variables
Let denote the free variables in a term .

We can define inductively over the definition of terms as follows:

If then we say that is a closed term.

Quiz 4
What are the free variables in the following?

1.
2.
3.
4.

Quiz 4
What are the free variables in the following?

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 11/15

In [5]:

-equivalence
Lambda calculus uses static scoping (just like OCaml)

This is equivalent to:

Renaming bound variables consistently preserves meaning
This is called as -renaming or -conversion.

If a term is obtained by -renaming another term then and are said to be -
equivalent.

Quiz 5

Out[5]:

- : Eval.SS.elt list = []

Out[5]:

- : Eval.SS.elt list = ["x"; "y"; "z"]

Out[5]:

- : Eval.SS.elt list = ["y"]

Out[5]:

- : Eval.SS.elt list = ["y"]

free_variables "\\x.x (\\y. y)";;

free_variables "x y z";;

free_variables "\\x.(\\y. y) x y";;

free_variables "\\x.(\\y.x) y";;

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 12/15

Which of the following equivalences hold?

1.
2.
3.

Quiz 5
Which of the following equivalences hold?

1.
2.
3.

Substitution
In order to formally define -equivalence, we need to define substitutions.
Substitution replaces free occurrences of a variable with a lambda term in some
other term .

We write it as . (read "N for x in M").

For example,

Substitution is quite subtle. So we will start with our intuitions and see how things break
and finally work up to the correct example.

Substitution: Take 1

This definition works for most examples. For example,

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 13/15

Substitution: Take 1

However, it fails if the substitution is on the bound variable:

The identity function has become a constant function!

Substitution: Take 2

However, this is not quite right. For example,

The constant function has become a identity function.
The problem here is that the free gets captured by the binder .

Substitution: Take 3
Capture-avoiding substitution

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 14/15

Unfortunately, this made substitution a partial function
There is no valid rule for

Substitution: Take 4
Capture-avoiding substitution + totality

A fresh binder is different from every other binder in use (generativity).
In the case above,

Now our example works out:

In [6]:

In [7]:

Out[6]:

- : string = "λy.λz.z w"

Out[7]:

- : string = "λx.x"

substitute "\\y.x" "x" "\\z.z w"

substitute "\\x.x" "x" "y"

14/08/2019 lec8

127.0.0.1:8888/notebooks/lec8/lec8.ipynb 15/15

In [8]:

-equivalence formally
 is an equivalence (reflexive, transitive, symmetric) relation such that:

Convention
From now on,

Unless stated otherwise, we identify lambda terms up to α-equivalence.
when we speak of lambda terms being equal, we mean that they are α-equivalent

Fin.

Out[8]:

- : string = "λx0.x"

substitute "\\x.y" "y" "x"

