Lambda Calculus: Syntax CS3100 Fall 2019

Review

Last time

- Higher Order Functions

Today

- Lambda Calculus: Basis of FP!
- Origin, Syntax, substitution, alpha equivalence

Computability

In 1930s

- What does it mean for the function $f: \mathbb{N} \rightarrow \mathbb{N}$ to be computable?
- Informal definition: A function is computable if using pencil-and-paper you can compute $f(n)$ for any n.
- Three different researchers attempted to formalise computability.

Alan Turning

- Defined an idealised computer -- The Turing Machine (1935)
- A function is computable if and only if it can be computed by a turning machine
- A programming language is turing complete if:
- It can map every turing machine to a program.
- A program can be written to emulate a turing machine.
- It is a superset of a known turning complete language.

Alonzo Church

- Developed the $\boldsymbol{\lambda}$-calculus as a formal system for mathematical logic (1929-1932).
- Postulated that a function is computable (in the intuitive sense) if and only if it can be written as a lambda term (1935).
- Church was Turing's PhD advisor!
- Turing showed that the systems defined by Church and his system were equivalent.
- Church-Turing Thesis

Kurt Gödel

- Defined the class of general recursive functions as the smallest set of functions containing
- all the constant functions
- the successor function and
- closed under certain operations (such as compositions and recursion).
- He postulated that a function is computable (in the intuitive sense) if and only if it is general recursive.

Impact of Church-Turing thesis

- The "Church-Turing Thesis" is by itself is one of the most important ideas on computer science
- The impact of Church and Turing's models goes far beyond the thesis itself.

Impact of Church-Turing thesis

- Oddly, however, the impact of each has been in almost completely separate communities
- Turing Machines \Rightarrow Algorithms \& Complexity
- Lambda Calculus \Rightarrow Programming Languages
- Not accidental
- Turing machines are quite low level \Rightarrow well suited for measuring resources (efficiency).
- Lambda Calculus is quite high level \Rightarrow well suited for abstraction and composition (structure).

Programming Language Expressiveness

- So what language features are needed to express all computable functions?
- What's the minimal language that is Turing Complete?
- Observe that many features that we have seen in this class were syntactic sugar
- Multi-argument functions - simulate using partial application
- For loop, while loop - simulate using recursive functions
- Mutable heaps - simulate using functional maps and pass around.

Functional Heap

```
In [1]:
type ('k,'v) heap = 'k -> 'v option
let empty_heap : ('k,'v) heap = fun k -> None
let set (h : ('k,'v) heap) (x : 'k) (v : 'v) : ('k,'v) heap =
    fun k -> if k = x then Some v else h k
let get (h : ('k,'v) heap) (x : 'k) : 'v option = h x
Findlib has been successfully loaded. Additional directive
S:
    #require "package";; to load a package
    #list;; to list the available packages
    #camlp4o;; to load camlp4 (standard synta
x)
    #camlp4r;; to load camlp4 (revised syntax)
    #predicates "p,q,...";; to set these predicates
    Topfind.reset();; to force that packages will be
reloaded
    #thread;; to enable threads
```

Out[1]:
type ('k, 'v) heap = 'k -> 'v option
Out[1]:
val empty_heap : ('k, 'v) heap $=$ <fun>
Out[1]:
val set : ('k, 'v) heap -> 'k -> 'v -> ('k, 'v) heap = <fun
>
Out[1]:
val get : ('k, 'v) heap -> 'k -> 'v option = <fun>

Functional Heap

In [2]:

```
let _ =
    let h = set empty_heap "a" 0 in
    let h = set h "b" 1 in
    (get h "a", get h "b", get h "c")
```

Out[2]:

- : int option * int option * int option $=($ Some 0, Some 1,
None)
- You can imagine passing around the heap as an implicit extra argument to every function.
- The issue of storing values of different types, default values, etc. can be orthogonally addressed.

All you need is Love Functions.

Lambda Calculus : Syntax

$e \quad::=x \quad$ (Variable)
| $\lambda x . e$ (Abstraction)
| $e e$ (Application)

- This grammar describes ASTs; not for parsing (ambiguous!)
- Lambda expressions also known as lambda terms
- $\lambda x . e$ is like fun $\mathrm{x} \rightarrow \mathrm{e}$

That's it! Nothing but higher order functions

Why Study Lambda Calculus?

- It is a "core" language
- Very small but still Turing complete
- But with it can explore general ideas
- Language features, semantics, proof systems, algorithms, ...
- Plus, higher-order, anonymous functions (aka lambdas) are now very popular!
- C++ (C++11), PHP (PHP 5.3.0), C\# (C\# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), ...
- and functional languages like OCaml, Haskell, F\#, ...

Three Conventions

1. Scope of λ extends as far right as possible

- Subject to scope delimited by parentheses
- $\lambda x . \lambda y . x y$ is the same as λx. $(\lambda y .(x y))$

2. Function Application is left-associative

- $x y z$ is ($x y$) z
- Same rule as OCaml

3. As a convenience, we use the following syntactic sugar for local declarations

- let $\mathrm{x}=\mathrm{e} 1$ in e2 is short for $(\lambda x . e 2) e 1$.

Lambda calculus interpreter in OCaml

- In Assignment 2, you will be implementing a lambda calculus interpreter in OCaml.
- What is the Abstract Syntax Tree (AST)?

```
type expr =
    | Var of string
    | Lam of string * expr
    | App of expr * expr
```


Lambda expressions in OCaml

- y is Var " y "
- $\lambda x . x$ is Lam ("x", Var "x")
- $\lambda x . \lambda y . x y$ is Lam ("x",(Lam("y",App (Var "x", Var "y"))))
- $(\lambda x . \lambda y \cdot x y) \lambda x . x x$ is

App
(Lam ("x", Lam ("y",App (Var "x", Var "y"))), Lam ("x", App (Var "x", Var "x")))

In [3]:

```
#use "init.ml";;
val parse : string -> Syntax.expr = <fun>
val free_variables : string -> Eval.SS.elt list = <fun>
val substitute : string -> string -> string -> string = <fu
n>
In [4]:
parse "y";;
parse "\\x.x";;
parse "\\x.\\y.x y";;
parse "(\\x.\\y.x y) \\x. x x";;
Out[4]:
- : Syntax.expr = Var "y"
Out[4]:
- : Syntax.expr = Lam ("x", Var "x")
Out[4]:
- : Syntax.expr = Lam ("x", Lam ("y", App (Var "x", Var
"y")))
Out[4]:
- : Syntax.expr =
App (Lam ("x", Lam ("y", App (Var "x", Var "y"))),
    Lam ("x", App (Var "x", Var "x")))
```


Quiz 1

$\lambda x .(y z)$ and $\lambda x, y z$ are equivalent.

1. True
2. False

Quiz 1

$\lambda x .(y z)$ and $\lambda x, y z$ are equivalent.

1. True ∇
2. False

Quiz 2

What is this term's AST? $\lambda x . x x$

1. App (Lam ("x", Var "x"), Var "x")
2. Lam (Var "x", Var "x", Var "x")
3. Lam ("x", App (Var "x", Var "x"))
4. App (Lam ("x", App ("x", "x")))

Quiz 2

What is this term's AST? $\lambda x . x x$

1. App (Lam ("x", Var "x"), Var "x")
2. Lam (Var "x", Var "x", Var "x")
3. Lam ("x", App (Var "x", Var "x")) V
4. App (Lam ("x", App ("x", "x")))

Quiz 3

This term is equivalent to which of the following?
$\lambda x . x a b$

1. $(\lambda x . x)(a b)$
2. $(((\lambda x . x) a) b)$
3. $\lambda x .(x(a b))$
4. $(\lambda x .((x a) b))$

Quiz 3

This term is equivalent to which of the following?
$\lambda x . x a b$

1. $(\lambda x . x)(a b)$
2. $(((\lambda x . x) a) b)$
3. λx. $(x(a b))$
4. $(\lambda x .((x a) b)) \nabla$

Free Variables

In

```
\lambdax. x y
```

- The first x is the binder.
- The second x is a bound variable.
- The y is a free variable.

Free Variables

Let $F V(t)$ denote the free variables in a term t.
We can define $F V(t)$ inductively over the definition of terms as follows:

$$
\begin{aligned}
F V(x) & =\{x\} \\
F V\left(\lambda x . t_{1}\right) & =F V\left(t_{1}\right) \backslash\{x\} \\
F V\left(t_{1} t_{2}\right) & =F V\left(t_{1}\right) \cup F V\left(t_{2}\right)
\end{aligned}
$$

If $F V(t)=\varnothing$ then we say that t is a closed term.

Quiz 4

What are the free variables in the following?

1. $\lambda x \cdot x(\lambda y . y)$
2. $x y z$
3. $\lambda x .(\lambda y . y) x y$
4. $\lambda x \cdot(\lambda y \cdot x) y$

Quiz 4

What are the free variables in the following?

1. $\lambda x \cdot x(\lambda y \cdot y)$	$\}$
2. $x y z$	$\{x, y, z\}$
3. $\lambda x \cdot(\lambda y \cdot y) x y$	$\{y\}$
4. $\lambda x \cdot(\lambda y \cdot x) y$	$\{y\}$

In [5]:

```
free_variables "\\x.x (\\y. y)";;
free_variables "x y z";;
free_variables "\\x.(\\y. y) x y";;
free_variables "\\x.(\\y.x) y";;
```

Out[5]:

- : Eval.SS.elt list = []

Out[5]:

- : Eval.SS.elt list = ["x"; "y"; "z"]

Out[5]:

- : Eval.SS.elt list = ["y"]

Out[5]:

- : Eval.SS.elt list = ["y"]

α-equivalence

Lambda calculus uses static scoping (just like OCaml)

$$
\lambda x \cdot x(\lambda x, x)
$$

This is equivalent to:

$$
\lambda x \cdot x(\lambda y . y)
$$

- Renaming bound variables consistently preserves meaning
- This is called as α-renaming or α-conversion.
- If a term t_{1} is obtained by α-renaming another term t_{2} then t_{1} and t_{2} are said to be α equivalent.

Quiz 5

Which of the following equivalences hold?

1. $\lambda x \cdot x(\lambda y, y) y={ }_{\alpha} \lambda y \cdot y(\lambda x . x) x$
2. $\lambda x \cdot x(\lambda y . y) y={ }_{\alpha} \lambda y . y(\lambda x . x) y$
3. $(\lambda x . x(\lambda y, y) y)={ }_{\alpha} \lambda w . w(\lambda w . w) y$

Quiz 5

Which of the following equivalences hold?

1. $\lambda x \cdot x(\lambda y . y) y={ }_{\alpha} \lambda y . y(\lambda x . x) x \mathbf{X}$
2. $\lambda x \cdot x(\lambda y . y) y={ }_{\alpha} \lambda y \cdot y(\lambda x . x) y \times$
3. $\lambda x . x(\lambda y . y) y={ }_{\alpha} \lambda w . w(\lambda w . w) y \nabla$

Substitution

- In order to formally define α-equivalence, we need to define substitutions.
- Substitution replaces free occurrences of a variable x with a lambda term N in some other term M.
- We write it as $M[N / x]$. (read " N for x in M ").

For example,

$$
(\lambda x . x y)[(\lambda z . z) / y]=\lambda x \cdot x(\lambda z . z)
$$

Substitution is quite subtle. So we will start with our intuitions and see how things break and finally work up to the correct example.

Substitution: Take 1

$$
\begin{aligned}
x[s / x] & =s & \\
y[s / x] & =y & \text { if } x \neq y \\
\left(\lambda y \cdot t_{1}\right)[s / x] & =\lambda y \cdot t_{1}[s / x] & \\
\left(t_{1} t_{2}\right)[s / x] & =\left(t_{1}[s / x]\right)\left(t_{2}[s / x]\right) &
\end{aligned}
$$

This definition works for most examples. For example,

Substitution: Take 1

$$
\begin{aligned}
x[s / x] & =s & \\
y[s / x] & =y & \text { if } x \neq y \\
\left(\lambda y \cdot t_{1}\right)[s / x] & =\lambda y \cdot t_{1}[s / x] & \\
\left(t_{1} t_{2}\right)[s / x] & =\left(t_{1}[s / x]\right)\left(t_{2}[s / x]\right) &
\end{aligned}
$$

However, it fails if the substitution is on the bound variable:

$$
(\lambda x \cdot x)[y / x]=\lambda x . y
$$

The identity function has become a constant function!

Substitution: Take 2

$$
\begin{array}{rlrl}
x[s / x] & =s & \\
y[s / x] & =y & & \text { if } x \neq y \\
\left(\lambda x . t_{1}\right)[s / x] & =\lambda x \cdot t_{1} & & \\
\left(\lambda y \cdot t_{1}\right)[s / x] & =\lambda y \cdot t_{1}[s / x] & \text { if } x \neq y \\
\left(t_{1} t_{2}\right)[s / x] & =\left(t_{1}[s / x]\right)\left(t_{2}[s / x]\right) &
\end{array}
$$

However, this is not quite right. For example,

$$
(\lambda x \cdot y)[x / y]=\lambda x \cdot x
$$

- The constant function has become a identity function.
- The problem here is that the free x gets captured by the binder x.

Substitution: Take 3

Capture-avoiding substitution

$$
\begin{aligned}
x[s / x] & =s & & \\
y[s / x] & =y & & \text { if } x \neq y \\
\left(\lambda x \cdot t_{1}\right)[s / x] & =\lambda x \cdot t_{1} & & \\
\left(\lambda y \cdot t_{1}\right)[s / x] & =\lambda y \cdot t_{1}[s / x] & & \text { if } x \neq y \text { and } y \notin F V(s) \\
\left(t_{1} t_{2}\right)[s / x] & =\left(t_{1}[s / x]\right)\left(t_{2}[s / x]\right) & &
\end{aligned}
$$

- Unfortunately, this made substitution a partial function
- There is no valid rule for $(\lambda x, y)[x / y]$

Substitution: Take 4

Capture-avoiding substitution + totality

$$
\begin{aligned}
x[s / x] & =s & & \\
y[s / x] & =y & & \text { if } x \neq y \\
\left(\lambda x \cdot t_{1}\right)[s / x] & =\lambda x \cdot t_{1} & & \\
\left(\lambda y \cdot t_{1}\right)[s / x] & =\lambda y \cdot t_{1}[s / x] & & \text { if } x \neq y \text { and } y \notin F V(s) \\
\left(\lambda y \cdot t_{1}\right)[s / x] & =\lambda w \cdot t_{1}[w / y][s / x] & & \text { if } x \neq y \text { and } y \in F V(s) \text { and } w \text { is fresh } \\
\left(t_{1} t_{2}\right)[s / x] & =\left(t_{1}[s / x]\right)\left(t_{2}[s / x]\right) & &
\end{aligned}
$$

- A fresh binder is different from every other binder in use (generativity).
- In the case above,

$$
w \text { is fresh } \equiv w \notin F V\left(t_{1}\right) \cup F V(s) \cup\{x\}
$$

Now our example works out:

$$
(\lambda x \cdot y)[x / y]=\lambda w \cdot x
$$

In [6]:

```
substitute "\\y.x" "x" "\\z.z w"
```

Out [6]:

- : string = " $\lambda \mathrm{y} . \lambda z . \mathrm{z} \mathrm{w}^{\prime \prime}$

In [7]:

```
substitute "\\x.x" "x" "y"
```

Out [7]:

- : string = " $\lambda \mathrm{x} . \mathrm{x}$ "

In [8]:
substitute "
x.y" "y" "x"
Out[8]:

- : string = " $\lambda x 0 . x "$

α-equivalence formally

$={ }_{\alpha}$ is an equivalence (reflexive, transitive, symmetric) relation such that:

$$
\begin{gathered}
\frac{M={ }_{\alpha} M^{\prime} N={ }_{\alpha} N^{\prime}}{x={ }_{\alpha} x} \\
\frac{z \notin F V(M) \cup F V(N) \quad M[z / x]={ }_{\alpha} N[z / y]}{\lambda x . M={ }_{\alpha} \lambda y \cdot N}
\end{gathered}
$$

Convention

From now on,

- Unless stated otherwise, we identify lambda terms up to a-equivalence.
- when we speak of lambda terms being equal, we mean that they are a-equivalent

