
05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 1/11

Pattern
Matching

CS3100
Fall
2019

Review

Previously:

Tuples, Records, Variants
Polymorphism
Lists, Option

This lecture:

Pattern Matching

Pattern
Matching

Pattern matching is data deconstruction
Match on the shape of data
Extract part(s) of data

Syntax

match e with
| p1 -> e1
| p2 -> e2
...
| pn -> en

p1 ... pn are patterns.

Pattern
Matching
on
Lists

type 'a list = [] | :: of 'a * 'a list

For lists, the patterns allowed follow from the constructors
The pattern [] matches the value [] .

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 2/11

The patterh h::t
matches 2::[] , binding h to 2 and t to [] .
matches 2::3::[] , binding h to 2 and t to 3::[] .

The pattern _ is a wildcard
pattern and matches anything.

In [1]:

In [2]:

In [3]:

In [4]:

Why
pattern
matching
is
THE
GREATEST

1. You cannot forget to match a case (Exhaustivity warning)

Out[1]:

val list_status : int list -> unit = <fun>

The list is empty

Out[2]:

- : unit = ()

The list is non-empty. Head = 1

Out[3]:

- : unit = ()

The list is non-empty. Head = 2

Out[4]:

- : unit = ()

let list_status l =
 match l with
 | [] -> print_endline "The list is empty"
 | h::t -> Printf.printf "The list is non-empty. Head = %d\n%!" h

list_status []

list_status [1;2;3]

list_status (2::[3;4])

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 3/11

In [5]:

Why
pattern
matching
is
THE
GREATEST

1. You cannot forget to match a case (Exhaustivity warning)
2. You cannot duplicate a case (Unused case warning)

In [6]:

Why
pattern
matching
is
THE
GREATEST

1. You cannot forget to match a case (Exhaustivity warning)
2. You cannot duplicate a case (Unused case warning)

Pattern
matching
leads
to
elegant,
concise,
beautiful

code

File "[5]", line 2, characters 2-139:
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
_::[]

Out[5]:

val list_status : int list -> unit = <fun>

File "[6]", line 5, characters 4-13:
Warning 11: this match case is unused.

Out[6]:

val list_status : int list -> unit = <fun>

let list_status l =
 match l with
 | [] -> print_endline "The list is empty"
 | h1::h2::t -> Printf.printf "The list is non-empty. 2nd element = %d\

let list_status l =
 match l with
 | [] -> print_endline "The list is empty"
 | h::t -> Printf.printf "The list is non-empty. Head = %d\n%!" h
 | h1::h2::t -> Printf.printf "The list is non-empty. 2nd element = %d\

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 4/11

Length
of
list

In [7]:

What is wrong with this code?

Length
of
list
(tail
recursive)

In [8]:

In [9]:

Match
ordering

The patterns are matched in the order that they are written down.

Out[7]:

val length : 'a list -> int = <fun>

Out[8]:

val length' : 'a list -> int -> int = <fun>

Out[8]:

val length : 'a list -> int = <fun>

Out[9]:

- : int = 4

let rec length l =
 match l with
 | [] -> 0
 | h::t -> 1 + length t

let rec length' l acc =
 match l with
 | [] -> acc
 | h::t -> length' t (1+acc)

let length l = length' l 0

length [1;2;3;4]

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 5/11

In [10]:

Exercise

Implement the reverse of a list.

In [11]:

In [12]:

Exercise

Implement the append of two lists.

In [13]:

Out[10]:

val is_empty : 'a list -> bool = <fun>

Out[11]:

val rev_list : 'a -> 'b = <fun>

Exception: Failure "not implemented".
Raised at file "stdlib.ml", line 33, characters 22-33
Called from file "[12]", line 1, characters 8-24
Called from file "toplevel/toploop.ml", line 180, character
s 17-56

Out[13]:

- : int list = [1; 2; 3; 4; 5; 6]

let is_empty l =
 match l with
 | [] -> true
 | _ -> false

let rev_list l = failwith "not implemented"

assert (rev_list [1;2;3] = [3;2;1])

[1;2;3] @ [4;5;6]

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 6/11

In [14]:

In [15]:

Nested
Matching

In [16]:

Nested
Matching

Out[14]:

val append : 'a -> 'b -> 'c = <fun>

Exception: Failure "not implemented".
Raised at file "stdlib.ml", line 33, characters 22-33
Called from file "[15]", line 1, characters 8-30
Called from file "toplevel/toploop.ml", line 180, character
s 17-56

Out[16]:

type color = Red | Green | Blue

Out[16]:

type point = { x : int; y : int; }

Out[16]:

type shape =
 Circle of point * float
 | Rect of point * point
 | ColorPoint of point * color

let append l1 l2 = failwith "not implemented"

assert (append [1;2;3] [4;5;6] = [1;2;3;4;5;6])

type color = Red | Green | Blue

type point = {x : int; y : int}

type shape =
 | Circle of point * float (* center, radius *)
 | Rect of point * point (* lower-left, upper-right *)
 | ColorPoint of point * color

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 7/11

Is the first shape in a list of shapes a red point?

In [17]:

Nested
Matching

Print the coordinates if the point is green.

In [18]:

In [19]:

When
do
you
use
";"

Out[17]:

val is_hd_red_circle : shape list -> bool = <fun>

Out[18]:

val print_green_point : shape list -> unit = <fun>

x = 0 y = 0
x = 4 y = 6

Out[19]:

- : unit = ()

let is_hd_red_circle l =
 match l with
 | ColorPoint(_,Red)::_ -> true
 | _ -> false

let rec print_green_point l =
 match l with
 | [] -> ()
 | ColorPoint({x;y}, Green)::tl ->
 Printf.printf "x = %d y = %d\n%!" x y;
 print_green_point tl
 | _::tl -> print_green_point tl

print_green_point [Rect ({x=1;y=1},{x=2;y=2});
 ColorPoint ({x=0;y=0}, Green);
 Circle ({x=1;y=3}, 5.4);
 ColorPoint ({x=4;y=6}, Green)]

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 8/11

When you evaluate an expression just the effect, you can sequence the expression with a semi-
colon.

let () = print_endline "Hello, world!" in
e

is equivalent to:

print_endline "Hello, world!";
e

Latter is considered better style.

Exceptions

OCaml has support for exceptions.
Similar to the ones found in C++ & Java.

Exceptions are (mostly) just variants.

type exn
exception MyException of string

The type exn is an extensible
variant.
New constructors of this type can be added after its original declaration.

Exceptions are raised with raise e where e is of type exn .
Handling exceptions is similar to pattern matching.

Find
the
green
point

Given a list of shapes return a point whose colour is green. Otherwise, raise NoGreenPoint
exception.

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 9/11

In [20]:

Find
the
green
point

In [21]:

In [22]:

Handling
the
exception

Given a list of shapes return Some p where p is a green point. Otherwise, return None .

Out[20]:

exception NoGreenPoint

Out[20]:

val find_green_point : shape list -> shape = <fun>

Exception: NoGreenPoint.
Raised at file "[20]", line 5, characters 16-28
Called from file "toplevel/toploop.ml", line 180, character
s 17-56

Out[22]:

- : shape = ColorPoint ({x = 0; y = 0}, Green)

exception NoGreenPoint

let rec find_green_point l =
 match l with
 | [] -> raise NoGreenPoint
 | h::tl ->
 match h with
 | ColorPoint (_, Green) -> h
 | _ -> find_green_point tl

find_green_point []

find_green_point [Rect ({x=1;y=1},{x=2;y=2}); ColorPoint ({x=0;y=0}, Gre

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 10/11

In [23]:

In [24]:

In [25]:

Exceptions:
Recommendations

Avoid exceptions in your code.
Unhandled exceptions are runtime errors; aim to avoid this.

No exhaustiveness check for exceptions (why?).
Whenever you might need to use exceptions, think whether you can replace that with

type 'a option = None | Some of 'a

or

type ('a,'b) result = Ok of 'a | Error of 'b

Exercise

List.hd : 'a list -> 'a and List.tl: 'a list -> 'a list are functions from
the list standard library (https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html). They raise
exception when the given list is empty. Implement safe versions of the functions whose

Out[23]:

val find_green_point_opt : shape list -> shape option = <fu
n>

Out[24]:

- : shape option = None

Out[25]:

- : shape option = Some (ColorPoint ({x = 0; y = 0}, Gree
n))

let find_green_point_opt l =
 try Some (find_green_point l) with
 | NoGreenPoint -> None

find_green_point_opt []

find_green_point_opt [Rect ({x=1;y=1},{x=2;y=2}); ColorPoint ({x=0;y=0},

05/08/2019 lec6

127.0.0.1:8888/notebooks/lec6/lec6.ipynb 11/11

signatures are:

In [26]:

Fin.

Out[26]:

val safe_hd : 'a list -> 'a option = <fun>

Out[26]:

val safe_tl : 'a list -> 'a list option = <fun>

let safe_hd (l : 'a list) : 'a option = failwith "not implemented"
let safe_tl (l : 'a list) : 'a list option = failwith "not implemented"

