
31/07/2019 lec3

127.0.0.1:8888/notebooks/lectures/lec3/lec3.ipynb# 1/9

Expressions

CS3100
Fall
2019

Recap

Last
Time:

Why functional programming matters?

Today:

Expressions, Values, Definitions.

Expressions

Every kind of expression has:

Syntax

Semantics:

Type-checking rules (static semantics): produce a type or fail with an error message
Evaluation rules (dynamic semantics): produce a value

(or exception or infinite loop)
Used
only
on
expressions
that
type-check (static vs dynamic languages)

Values

A value is an expression that does not need further evaluation.

31/07/2019 lec3

127.0.0.1:8888/notebooks/lectures/lec3/lec3.ipynb# 2/9

Expressions

Values

Values
in
OCaml

In [1]:

In [2]:

Out[1]:

- : int = 42

Out[2]:

- : string = "Hello"

42

"Hello"

31/07/2019 lec3

127.0.0.1:8888/notebooks/lectures/lec3/lec3.ipynb# 3/9

In [3]:

Observe that the values have
static semantics: types int , string , float .
dynamic semantics: the value itself.

Type
Inference
and
annotation

OCaml compiler infers types
Compilation fails with type error if it can't
Hard part of language design: guaranteeing compiler can infer types when program is
correctly written

You can manually annotate types anywhere – Replace e with (e : t)
Useful for resolving type errors

In [4]:

More
values

OCaml also support other values. See manual (https://caml.inria.fr/pub/docs/manual-
ocaml/values.html).

In [5]:

Out[3]:

- : float = 3.1415

Out[4]:

- : float = 42.4

Out[5]:

- : unit = ()

3.1415

(42.4 : float)

()

31/07/2019 lec3

127.0.0.1:8888/notebooks/lectures/lec3/lec3.ipynb# 4/9

In [6]:

In [7]:

In [8]:

Static
vs
Dynamic
distinction

Static typing helps catch lots errors at compile time.

Which of these is static error?

In [9]:

In [10]:

Out[6]:

- : int * string * bool * float = (1, "hello", true, 3.4)

Out[7]:

- : int list = [1; 2; 3]

Out[8]:

- : int array = [|1; 2; 3|]

File "[9]", line 1, characters 5-9:
Error: This expression has type float but an expression was
expected of type
 int
 1: 23 = 45.0

Out[10]:

- : bool = false

(1,"hello", true, 3.4)

[1;2;3]

[|1;2;3|]

23 = 45.0

23 = 45

31/07/2019 lec3

127.0.0.1:8888/notebooks/lectures/lec3/lec3.ipynb# 5/9

If
expression

if e1 then e2 else e3

Static
Semantics: If e1 has type bool , and e2 has type t2 and e3 has type t2
then if e1 then e2 else e3 has type t2 .
Dynamic
Semantics: If e1 evaluates to true, then evaluate e2 , else evaluate e3

In [11]:

In [12]:

More
Formally

Static
Semantics
of
if
expression

(omits some details which we will cover in later lectures)

to
be
read
as

Such rules are known as inference rules.

Out[11]:

- : string = "World"

File "[12]", line 1, characters 21-25:
Error: This expression has type float but an expression was
expected of type
 int
 1: if true then 13 else 13.4

if 32 = 31 then "Hello" else "World"

if true then 13 else 13.4

31/07/2019 lec3

127.0.0.1:8888/notebooks/lectures/lec3/lec3.ipynb# 6/9

Dynamic
semantics
of
if
expression

For the case when the predicate evaluates to true :

For the case when the predicate evaluates to false :

Read as evaluates
to.

Let
expression

let x = e1 in e2

x is an identifier
e1 is the binding expression
e2 is the body expression
let x = e1 in e2 is itself an expression

In [13]:

In [14]:

Out[13]:

- : int = 10

Out[14]:

- : int = 15

let x = 5 in x + 5

let x = 5 in
let y = 10 in
x + y

31/07/2019 lec3

127.0.0.1:8888/notebooks/lectures/lec3/lec3.ipynb# 7/9

In [15]:

Scopes
&
shadowing

let x = 5 in
let x = 10 in
x

is parsed as

let x = 5 in
(let x = 10 in
x)

Importantly, x is not mutated; there are two x s in different scopes.
Inner definitions shadow the outer definitions.

In [16]:

let
at
the
top-level

let x = e

is implicitly, "in the rest of the program text"

Out[15]:

- : int = 10

File "[15]", line 1, characters 4-5:
Warning 26: unused variable x.

Out[16]:

- : int = 15

let x = 5 in
let x = 10 in
x

let x = 5 in
let y =
 let x = 10 in
 x
in
x+y

31/07/2019 lec3

127.0.0.1:8888/notebooks/lectures/lec3/lec3.ipynb# 8/9

In [17]:

In [18]:

In [19]:

Definitions

The top-level let x = e are known as definitions.
Definitions give name to a value.
Definitions are not expressions, or vice versa.
But definitions syntactically contain expressions.

Expressions

Values

Definitions

Let
expression

Out[17]:

val a : string = "Hello"

Out[18]:

val b : string = "World"

Out[19]:

val c : string = "HelloWorld"

let a = "Hello"

let b = "World"

let c = a ^ b

31/07/2019 lec3

127.0.0.1:8888/notebooks/lectures/lec3/lec3.ipynb# 9/9

let x = e1 in e2

Static
semantics

(again omits some details)

Dynamic
semantics

Exercise

In OCaml, we cannot use + for floating point addition, and instead have to use +. . Why do
you think this is the case?

In [20]:

Exercise

Write down the static semantics for + and +. .

Fin.

Out[20]:

- : float = 11.4

5.4 +. 6.0

