Sudoku & Constraint Logic Programming

CS3100 Fall 2019

Review

Preivously

• Relational Databases and their relationship to Prolog

This lecture

- Solving Sudoku
- · Making sudoku more efficient with constraint logic programming

Sudoku

	5	4		6	1		
8				1		9	
	4		1		5		
7			9			2	
	6		8		3		
2						7	
		5		3	6		

Generate and test

Each row value is a permutation of [1, 2, 3, 4]. So use the perm/2 from earlier.

In [1]:

```
take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).
perm([],[]).
perm(L,[H|T]) :- take(L,H,R), perm(R,T).
```

Added 4 clauses(s).

In [2]:

```
diff(L) :- perm([1,2,3,4],L).
```

Added 1 clauses(s).

Check

Are rows ok?

In [3]:

```
row([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
diff([A,B,C,D]), diff([E,F,G,H]),
diff([I,J,K,L]), diff([M,N,O,P]).
```

Added 1 clauses(s).

In [4]:

```
col([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
diff([A,E,I,M]),diff([B,F,J,N]),
diff([C,G,K,O]),diff([D,H,L,P]).
```

Added 1 clauses(s).

Check

Are boxes ok?

In [5]:

```
box([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
diff([A,B,E,F]),diff([C,D,G,H]),
diff([I,J,M,N]),diff([K,L,O,P]).
```

Added 1 clauses(s).

Solving Sudoku

In [6]:

```
sudoku(L) :- row(L), col(L), box(L).
```

```
Added 1 clauses(s).
```

Solving our sudoku problem

Α	В	4	D
Е	2	Ġ	Η
	J	1	L
Μ	3	0	Ρ

[A,B,4,D, E,2,G,H, I,J,1,L, M,3,O,P]

lec28

In [7]:

?- sudoku([A,B,4,D,E,2,G,H,I,J,1,L,M,3,O,P]).
A = 3, B = 1, E = 4, D = 2, G = 3, I = 2, H = 1, J = 4, M = 1, L = 3,
O = 2, P = 4.

Scale up in the obvious way to 3x3

X11	X12	X13	X14	X15	X16	X17	X18	X19
X21	X22	X23	X24	X25	X26	X27	X28	X29
X31	X32	X33	X34	X35	X36	X37	X38	X39
X41	X42	X43	X44	X45	X46	X47	X48	X49
X51	X52	X53	X54	X55	X56	X57	X58	X59
X61	X62	X63	X64	X65	X66	X67	X68	X69
X71	X72	X73	X74	X75	X76	X77	X78	X79
X81	X82	X83	X84	X85	X86	X87	X88	X89
X91	X92	X93	X94	X95	X96	X97	X98	X99

· Brute force is impractically slow for this problem.

- There are very many valid grids: 6670903752021072936960 ≈ 6.671 × 10^21
- See <u>http://www.afjarvis.staff.shef.ac.uk/sudoku/ (http://www.afjarvis.staff.shef.ac.uk/sudoku/)</u>

Constraint Logic Programming

- We can solve sudoku more efficiently with what is known as Constraint Logic Programming
- Prolog is limited to the single equality constraint (that two terms must unify)
- We can generalise this to include other types of constraints (over integers, booleans, reals)
- Constrain logic programming is defined over
 - Domains: the set of values the variables can take
 - Constraints: the domain specific constraints that you can write between the terms.
 - Solver: way to answer questions posed over those constraints.
- We usually write CLP(X) to define contraint logic programming over domain X.

Constraint Logic Programming

- Plain prolog can be thought of as CLP(H), where
 - the domain H is the Herbrand base of the program and
 - the constraint is just = unification.

- SLD resolution is the solver
- For integers CLP(FD) where
 - the domain is integers; FD stands for finite domain.
 - the contraints can be < , > , <= , >= , etc.
 - Specialised CLP(FD) solver.

Constraint Logic Programming

- Constraints blend in naturally into Prolog programs, and behave exactly like plain Prolog predicates in those cases that can also be expressed without constraints.
- Main differences:
 - Constraints can delay checks until their truth can be safely decided.
 - Order of expression of constraints doesn't matter.
 - Prune the search domain using a technique called constraint propagation.
 - Generally much faster (which will come in handy for Sudoku).

CLP(FD) Example

The following example fails due to instantiation error.

In [8]:

```
?-X > Y, member(X,[1,2,3]), Y=2.
```

```
ERROR: Caused by: ' X > Y, member(X,[1,2,3]), Y=2'. Returned: 'error
(instantiation_error, context(:(system, /(>, 2)), _1870))'.
```

which can be fixed by reordering.

In [9]:

```
?- member(X,[1,2,3]), Y=2, X > Y.
```

```
Y = 2, X = 3.
```

CLP(FD) Example

Consider same problem encoded with constraints on integers.

In [10]:

```
?- use_module(library(clpfd)).
?- X #> Y, X in 1..3, Y=2.
```

true.

Y = 2, X = 3.

#> is a contraint from clpfd library.

lec28

Contraint Propagation

What happens if we unify Y with 1.

In [11]:

```
?- X #> Y, X in 1..3, Y=1.
```

```
Y = 1, X = Variable(68).
```

One more of those Jupyter + Prolog issue. On wipl, you get:

Y = 1, X in 2..3.

which shows that x 's domain has been refined through constraint propagation.

Labelling

We can run backtracking search over constraints through label/1 which finds possible assignments for variables based on constraints.

In [12]:

```
?- X #> Y, X in 1..3, Y=1, label([X]).
Y = 1, X = 2;
```

```
Y = 1, X = 3.
```

Sudo	ku : D	omai	n		Variables and Domains
	Α	В	С	D	$\begin{array}{ll} A \in \{1,2,3,4\} & B \in \{1,2,3,4\} \\ C \in \{1,2,3,4\} & D \in \{1,2,3,4\} \end{array}$
	E	F	G	Н	$E \in \{1,2,3,4\}$ $F \in \{1,2,3,4\}$ $G \in \{1,2,3,4\}$ $H \in \{1,2,3,4\}$
	I	J	К	L	$I \in \{1,2,3,4\}$ $J \in \{1,2,3,4\}$ $K \in \{1,2,3,4\}$ $L \in \{1,2,3,4\}$
	М	Ν	0	Р	$ M \in \{1,2,3,4\} \qquad N \in \{1,2,3,4\} \\ O \in \{1,2,3,4\} \qquad P \in \{1,2,3,4\} $

Contraint on rows

All the values in rows are different

Constraint of columns

All the column values are different

Constraint on box

All the values in each box are different

All Constraints

 $\{1,2,3,4\}$ $\{1,2,3,4\}$ в ^{1,2,3,4} А {1,2,3,4} C {1,2,3,4} {1,2,3,4} N {1,2,3,4} M <mark>ا {1,2,3,4}</mark> E {1,2,3,4} {1,2,3,4} L F {1,2,3,4} {1,2,3,4} K G {1,2,3,4} {1,2,3,4} J н $\{1,2,3,4\}$ $\{1,2,3,4\}$

lec28

Constraint Propagation

Algorithm Converges 3 2 1 4 {3} {2} ຼ{1} _c {4} **{3**}_N 3 1 2 4 _D {2} {1} _M E {4} **{3}** ∟ 2 3 4 1 F {2} **{1**} K ^{♥ `G}{3} [|] {1} **{4**} 3 1 2 4

Solving Sudoku using CLP

Use bounds library, which is a simple integer solver with upper and lower bounds.

Notebook note: You will need to restart the kernel before running the subsequent examples.

lec28

In [1]:

```
?- use_module(library(bounds)).
```

true.

In [2]:

```
diff2(L) :- L in 1..4, all_different(L).
```

```
Added 1 clauses(s).
```

Solving sudoku using CLP

The rest of the rules remain the same.

In [3]:

```
rows2([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
diff2([A,B,C,D]), diff2([E,F,G,H]),
diff2([I,J,K,L]), diff2([M,N,O,P]).
cols2([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
diff2([A,E,I,M]), diff2([B,F,J,N]),
diff2([C,G,K,O]), diff2([D,H,L,P]).
box2([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
diff2([A,B,E,F]), diff2([C,D,G,H]),
diff2([I,J,M,N]), diff2([K,L,O,P]).
```

sudoku2(L) :- rows2(L), cols2(L), box2(L), label(L).

Added 4 clauses(s).

Solving sudoku using CLP

In [4]:

```
?- sudoku2([A,B,4,D,E,2,G,H,I,J,1,L,M,3,O,P]).
```

```
A = 3, B = 1, E = 4, D = 2, G = 3, I = 2, H = 1, J = 4, M = 1, L = 3, O = 2, P = 4.
```

Exercise: Solve 9x9 sudoku using CLP.

Fin.