
29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 1/11

Sudoku & Constraint Logic Programming
CS3100 Fall 2019

Review

Preivously
Relational Databases and their relationship to Prolog

This lecture
Solving Sudoku
Making sudoku more efficient with constraint logic programming

Sudoku

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 2/11

Make the problem easier

Generate and test
Each row value is a permutation of [1,2,3,4] . So use the perm/2 from earlier.

In [1]:

In [2]:

Check
Are rows ok?

In [3]:

Are columns ok?

Added 4 clauses(s).

Added 1 clauses(s).

Added 1 clauses(s).

take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).
perm([],[]).
perm(L,[H|T]) :- take(L,H,R), perm(R,T).

diff(L) :- perm([1,2,3,4],L).

row([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
 diff([A,B,C,D]), diff([E,F,G,H]),
 diff([I,J,K,L]), diff([M,N,O,P]).

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 3/11

Are columns ok?

In [4]:

Check
Are boxes ok?

In [5]:

Solving Sudoku
In [6]:

Solving our sudoku problem

Added 1 clauses(s).

Added 1 clauses(s).

Added 1 clauses(s).

col([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
 diff([A,E,I,M]),diff([B,F,J,N]),
 diff([C,G,K,O]),diff([D,H,L,P]).

box([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
 diff([A,B,E,F]),diff([C,D,G,H]),
 diff([I,J,M,N]),diff([K,L,O,P]).

sudoku(L) :- row(L), col(L), box(L).

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 4/11

In [7]:

Scale up in the obvious way to 3x3

Brute force is impractically slow for this problem.
There are very many valid grids: 6670903752021072936960 ≈ 6.671 × 10^21
See http://www.afjarvis.staff.shef.ac.uk/sudoku/ (http://www.afjarvis.staff.shef.ac.uk/sudoku/)

Constraint Logic Programming
We can solve sudoku more efficiently with what is known as Constraint Logic Programming
Prolog is limited to the single equality constraint (that two terms must unify)

We can generalise this to include other types of constraints (over integers, booleans, reals)
Constrain logic programming is defined over

Domains: the set of values the variables can take
Constraints: the domain specific constraints that you can write between the terms.
Solver: way to answer questions posed over those constraints.

We usually write CLP(X) to define contraint logic programming over domain X .

Constraint Logic Programming
Plain prolog can be thought of as CLP(H) , where

the domain H is the Herbrand base of the program and
the constraint is just = unification.

A = 3, B = 1, E = 4, D = 2, G = 3, I = 2, H = 1, J = 4, M = 1, L = 3,
O = 2, P = 4 .

?- sudoku([A,B,4,D,E,2,G,H,I,J,1,L,M,3,O,P]).

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 5/11

SLD resolution is the solver
For integers CLP(FD) where

the domain is integers; FD stands for finite domain.
the contraints can be < , > , <= , >= , etc.
Specialised CLP(FD) solver.

Constraint Logic Programming
Constraints blend in naturally into Prolog programs, and behave exactly like plain Prolog predicates in
those cases that can also be expressed without constraints.
Main differences:

Constraints can delay checks until their truth can be safely decided.
Order of expression of constraints doesn't matter.
Prune the search domain using a technique called constraint propagation.
Generally much faster (which will come in handy for Sudoku).

CLP(FD) Example
The following example fails due to instantiation error.

In [8]:

which can be fixed by reordering.

In [9]:

CLP(FD) Example
Consider same problem encoded with constraints on integers.

In [10]:

#> is a contraint from clpfd library.

ERROR: Caused by: ' X > Y, member(X,[1,2,3]), Y=2'. Returned: 'error
(instantiation_error, context(:(system, /(>, 2)), _1870))'.

Y = 2, X = 3 .

true.
Y = 2, X = 3 .

?- X > Y, member(X,[1,2,3]), Y=2.

?- member(X,[1,2,3]), Y=2, X > Y.

?- use_module(library(clpfd)).
?- X #> Y, X in 1..3, Y=2.

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 6/11

Contraint Propagation
What happens if we unify Y with 1.

In [11]:

One more of those Jupyter + Prolog issue. On swipl , you get:

Y = 1,
X in 2..3.

which shows that X 's domain has been refined through constraint propagation.

Labelling
We can run backtracking search over constraints through label/1 which finds possible assignments for
variables based on constraints.

In [12]:

Sudoku : Domain

Contraint on rows
All the values in rows are different

Y = 1, X = Variable(68) .

Y = 1, X = 2 ;
Y = 1, X = 3 .

?- X #> Y, X in 1..3, Y=1.

?- X #> Y, X in 1..3, Y=1, label([X]).

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 7/11

Constraint of columns
All the column values are different

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 8/11

Constraint on box
All the values in each box are different

All Constraints

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 9/11

Constraint Propagation

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 10/11

Algorithm Converges

Solving Sudoku using CLP
Use bounds library, which is a simple integer solver with upper and lower bounds.

Notebook note: You will need to restart the kernel before running the subsequent examples.

29/10/2019 lec28

127.0.0.1:8888/notebooks/lec28/lec28.ipynb 11/11

In [1]:

In [2]:

Solving sudoku using CLP
The rest of the rules remain the same.

In [3]:

Solving sudoku using CLP
In [4]:

Exercise: Solve 9x9 sudoku using CLP.

Fin.

true.

Added 1 clauses(s).

Added 4 clauses(s).

A = 3, B = 1, E = 4, D = 2, G = 3, I = 2, H = 1, J = 4, M = 1, L = 3,
O = 2, P = 4 .

?- use_module(library(bounds)).

diff2(L) :- L in 1..4, all_different(L).

rows2([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
 diff2([A,B,C,D]), diff2([E,F,G,H]),
 diff2([I,J,K,L]), diff2([M,N,O,P]).

cols2([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
 diff2([A,E,I,M]), diff2([B,F,J,N]),
 diff2([C,G,K,O]), diff2([D,H,L,P]).

box2([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
 diff2([A,B,E,F]), diff2([C,D,G,H]),
 diff2([I,J,M,N]), diff2([K,L,O,P]).

sudoku2(L) :- rows2(L), cols2(L), box2(L), label(L).

?- sudoku2([A,B,4,D,E,2,G,H,I,J,1,L,M,3,O,P]).

