Sudoku \& Constraint Logic Programming CS3100 Fall 2019

Review

Preivously

- Relational Databases and their relationship to Prolog

This lecture

- Solving Sudoku
- Making sudoku more efficient with constraint logic programming

Sudoku

		5	4		6	1		
	8				1		9	
		4		1		5		
	7			9			2	
		6		8		3		
	2						7	
			5		3	6		

Make the problem easier

A	B	4	D
E	2	G	H
I	J	1	L
M	3	O	P

[A,B,4,D,
E,2,G,H,
I,J,1,L,
M,3,O,P]

Generate and test

Each row value is a permutation of $[1,2,3,4]$. So use the perm/2 from earlier.

In [1]:

```
take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).
perm([],[]).
perm(L,[H|T]) :- take(L,H,R), perm(R,T).
```

Added 4 clauses(s).

In [2]:

```
diff(L) :- perm([1,2,3,4],L).
```

Added 1 clauses(s).

Check

Are rows ok?

In [3]:

```
row([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
    diff([A,B,C,D]), diff([E,F,G,H]),
    diff([I,J,K,L]), diff([M,N,O,P]).
```

Added 1 clauses(s).

In [4]:

```
Col([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
    diff([A,E,I,M]),diff([B,F,J,N]),
    diff([C,G,K,O]),diff([D,H,L,P]).
```

Added 1 clauses(s).

Check

Are boxes ok?

In [5]:

```
box([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
    diff([A,B,E,F]),\operatorname{diff}([C,D,G,H]),
    diff([I,J,M,N]),diff([K,L,O,P]).
```

Added 1 clauses(s).

Solving Sudoku

In [6]:
sudoku(L) :- row(L), col(L), box(L).
Added 1 clauses(s).

Solving our sudoku problem

A	B	4	D
E	2	G.	H
I	J	1	L
M	3	O	P

[A,B,4,D,
 E,2,G,H,
 I,J,1,L,
 M,3,O,P]

In [7]:
?- sudoku([A,B,4,D,E,2,G,H,I,J,1,L,M,3,O,P]).
$\mathrm{A}=3, \mathrm{~B}=1, \mathrm{E}=4, \mathrm{D}=2, \mathrm{G}=3, \mathrm{I}=2, \mathrm{H}=1, \mathrm{~J}=4, \mathrm{M}=1, \mathrm{~L}=3$, $O=2, P=4$.

Scale up in the obvious way to 3×3

$X 11$	$X 12$	$X 13$	$X 14$	$X 15$	$X 16$	$X 17$	$X 18$	$X 19$
$X 21$	$X 22$	$X 23$	$X 24$	$X 25$	$X 26$	$X 27$	$X 28$	$X 29$
$X 31$	$X 32$	$X 33$	$X 34$	$X 35$	$X 36$	$X 37$	$X 38$	$X 39$
$X 41$	$X 42$	$X 43$	$X 44$	$X 45$	$X 46$	$X 47$	$X 48$	$X 49$
$X 51$	$X 52$	$X 53$	$X 54$	$X 55$	$X 56$	$X 57$	$X 58$	$X 59$
$X 61$	$X 62$	$X 63$	$X 64$	$X 65$	$X 66$	$X 67$	$X 68$	$X 69$
$X 71$	$X 72$	$X 73$	$X 74$	$X 75$	$X 76$	$X 77$	$X 78$	$X 79$
$X 81$	$X 82$	$X 83$	$X 84$	$X 85$	$X 86$	$X 87$	$X 88$	$X 89$
$X 91$	$X 92$	$X 93$	$X 94$	$X 95$	$X 96$	$X 97$	$X 98$	$X 99$

- Brute force is impractically slow for this problem.
- There are very many valid grids: $6670903752021072936960 \approx 6.671 \times 10^{\wedge} 21$
- See http://www.afjarvis.staff.shef.ac.uk/sudoku/(http://www.afjarvis.staff.shef.ac.uk/sudoku/).

Constraint Logic Programming

- We can solve sudoku more efficiently with what is known as Constraint Logic Programming
- Prolog is limited to the single equality constraint (that two terms must unify)
- We can generalise this to include other types of constraints (over integers, booleans, reals)
- Constrain logic programming is defined over
- Domains: the set of values the variables can take
- Constraints: the domain specific constraints that you can write between the terms.
- Solver: way to answer questions posed over those constraints.
- We usually write CLP (X) to define contraint logic programming over domain X .

Constraint Logic Programming

- Plain prolog can be thought of as CLP (H), where
- the domain H is the Herbrand base of the program and
- the constraint is just $=$ unification.
- SLD resolution is the solver
- For integers CLP (FD) where
- the domain is integers; FD stands for finite domain.
- the contraints can be $<,>,<=,>=$, etc.
- Specialised CLP (FD) solver.

Constraint Logic Programming

- Constraints blend in naturally into Prolog programs, and behave exactly like plain Prolog predicates in those cases that can also be expressed without constraints.
- Main differences:
- Constraints can delay checks until their truth can be safely decided.
- Order of expression of constraints doesn't matter.
- Prune the search domain using a technique called constraint propagation.
- Generally much faster (which will come in handy for Sudoku).

CLP(FD) Example

The following example fails due to instantiation error.

In [8]:
?- $\mathrm{X}>\mathrm{Y}$, member $(\mathrm{X},[1,2,3]), \mathrm{Y}=2$.
ERROR: Caused by: ' $\mathrm{X}>\mathrm{Y}$, member (X,[1,2,3]), Y=2'. Returned: 'error (instantiation_error, context(: (system, /(>, 2)), _1870))'.
which can be fixed by reordering.

In [9]:
?- member $(\mathrm{X},[1,2,3]), \mathrm{Y}=2, \mathrm{X}>\mathrm{Y}$.
$\mathrm{Y}=2, \mathrm{X}=3$.

CLP(FD) Example

Consider same problem encoded with constraints on integers.

```
In [10]:
```

```
?- use_module(library(clpfd)).
```

? - X \# Y, X in $1 . .3$, $\mathrm{Y}=2$.
true.
$\mathrm{Y}=2, \mathrm{X}=3$.
\#> is a contraint from clpfd library.

Contraint Propagation

What happens if we unify Y with 1 .

In [11]:
? - $\mathrm{X} \#>\mathrm{Y}, \mathrm{X}$ in 1..3, $\mathrm{Y}=1$.
Y = 1, X = Variable(68) .

One more of those Jupyter + Prolog issue. On swipl, you get:

```
Y = 1,
x in 2..3.
```

which shows that x 's domain has been refined through constraint propagation.

Labelling

We can run backtracking search over constraints through label/1 which finds possible assignments for variables based on constraints.

In [12]:

```
?- X #> Y, X in 1..3, Y=1, label([X]).
```

$\mathrm{Y}=1, \mathrm{X}=2$;
$Y=1, X=3$.

Sudoku: Domain

A	B	C	D
E	F	G	H
I	J	K	L
M	N	O	P

Variables and Domains

$A \in\{1,2,3,4\}$	$B \in\{1,2,3,4\}$
$C \in\{1,2,3,4\}$	$D \in\{1,2,3,4\}$
$E \in\{1,2,3,4\}$	$F \in\{1,2,3,4\}$
$G \in\{1,2,3,4\}$	$H \in\{1,2,3,4\}$
$I \in\{1,2,3,4\}$	$J \in\{1,2,3,4\}$
$K \in\{1,2,3,4\}$	$L \in\{1,2,3,4\}$
$M \in\{1,2,3,4\}$	$N \in\{1,2,3\}$
$O \in\{1,2,3,4\}$	$P \in\{1,2,3,4\}$

Contraint on rows

All the values in rows are different

				\{1,2,3,4\}	\{1,2,3,4\}
				$\frac{\{1,2,3,4\}}{\{1,2,3,4\}} \mathrm{O}$	
				$\{1,2,3,4\} L$ $\{1,2,3,4\}$ K	$\begin{aligned} & E\{1,2,3,4\} \\ & F\{1.2 .3 .4\} \end{aligned}$
A	B	C	D		
E	F	G	H		
1	J	K	L		
M	N	O	P		

Constraint of columns

All the column values are different

Constraint on box

All the values in each box are different

All Constraints

Constraint Propagation

Algorithm Converges

3	1	4	2
4	2	3	1
2	4	1	3
1	3	2	4

Solving Sudoku using CLP

Use bounds library, which is a simple integer solver with upper and lower bounds.
Notebook note: You will need to restart the kernel before running the subsequent examples.

In [1]:
?- use_module(library(bounds)).
true.

In [2]:

```
diff2(L) :- L in 1..4, all_different(L).
```

Added 1 clauses(s).

Solving sudoku using CLP

The rest of the rules remain the same.

In [3]:

```
rows2([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
    diff2([A,B,C,D]), diff2([E,F,G,H]),
    diff2([I,J,K,L]), diff2([M,N,O,P]).
cols2([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
    diff2([A,E,I,M]), diff2([B,F,J,N]),
    diff2([C,G,K,O]), diff2([D,H,L,P]).
box2([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :-
    diff2([A,B,E,F]), diff2([C,D,G,H]),
    diff2([I,J,M,N]), diff2([K,L,O,P]).
```

sudoku2(L) :- rows2(L), cols2(L), box2(L), label(L).

Added 4 clauses(s).

Solving sudoku using CLP

In [4]:
?- sudoku2 ([A, B, 4, D, E, $2, G, H, I, J, 1, L, M, 3, O, P])$.
$\mathrm{A}=3, \mathrm{~B}=1, \mathrm{E}=4, \mathrm{D}=2, \mathrm{G}=3, \mathrm{I}=2, \mathrm{H}=1, \mathrm{~J}=4, \mathrm{M}=1, \mathrm{~L}=3$, $O=2, P=4$.

Exercise: Solve 9×9 sudoku using CLP.

Fin.

