
29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 1/12

Graph Search

CS3100 Fall 2019

Review

Previously
Countdown, Type Inference, Program Synthesis.

This lecture
Graph search

Solving a Maze
and other problems.

How to reach the center of the maze?

There are multiple paths.
Only some of the paths may lead to the center.

Solving the maze requires graph search.

Learning Goals
How to encode this maze as a graph search problem.
How to solve this program.
How to handle cycles in the search path.

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 2/12

Each opening is a vertex

Edges connect adjacent openings

A route(A,B) holds if B is one of the openings reachable on entering through A .

Abstract the maze into a graph.

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 3/12

Encode the graph as facts

In [1]:

Encode the rules for solving the maze

Added 15 clauses(s).

route(a,g).
route(a,b).
route(g,l).
route(g,f).
route(l,s).
route(b,c).
route(b,h).
route(c,d).
route(h,o).
route(d,i).
route(d,j).
route(i,p).
route(p,q).
route(j,r).
route(r,u).

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 4/12

In [2]:

In [3]:

Prolog says that there is a path from a to u.

Remembering the route
We can attach a log to remember the travel route.

In [4]:

In [5]:

What if there are cycles in the graph

Added 5 clauses(s).

true.

Added 3 clauses(s).

L = [a-b, b-c, c-d, d-j, j-r, r-u] .

travel(A,A).
travel(A,C) :- route(A,B), travel(B,C).

start(a).
finish(u).

solve :- start(A), finish(B), travel(A,B).

?- solve.

travellog(A,A,[]).
travellog(A,C,[A-B|Steps]) :-
 route(A,B), travellog(B,C,Steps).
solve(L) :- start(A), finish(B), travellog(A,B,L).

?- solve(L).

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 5/12

Prolog does DFS
Search can go into an infinite loop a-b-c-d-v-q-p-i-v-q-p-i-v-....

Cyclic graph

Cyclic graph

In [6]:

Added 2 clauses(s).

route(q,v).
route(v,d).

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 6/12

In []:

Remembering visited nodes

In [7]:

In [8]:

In [9]:

Exercise: Implement solve2 with a log.

Missionaries and Cannibals
Maze is quite straight-forward to map. Other problems not so much.

3 missionaries, 3 cannibals and 1 boat.
The boat carries 2 people.
If the Cannibals outnumber the Missionaries they will eat them.
Get them all from one side of the river to the other?

Added 2 clauses(s).

Added 1 clauses(s).

true.

?- solve.

travelsafe(A,A,_).
travelsafe(A,C,Visited) :-
 route(A,B),
 \+member(B,Visited),
 travelsafe(B,C,[B|Visited]).

solve2 :- start(A), finish(B), travelsafe(A,B,[]).

?- solve2.

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 7/12

Represent the state
We need to represent the number of missionaries and cannibals on each bank, and where the boat is.

In [10]:

Check for safety of a state
A state is safe if no missionary gets eaten.

A missionary gets eaten if there is at least one missonary on a bank and the number of cannibals on that bank
outnumber them.

In [11]:

Defining steps
In order to define a transition, we need all possible ways we can take a step. The boat can carry at most 2
people and at least one person.

In [12]:

Defining transitions
A predicate step(A,B) is defined if there is a carry/2 that moves the state from A to B .

Added 2 clauses(s).

Added 3 clauses(s).

Added 5 clauses(s).

start(3-3-0-0-l).
finish(0-0-3-3-_).

safe(0-_-M2-C2-_) :- M2 >= C2.
safe(M1-C1-0-_-_) :- M1 >= C1.
safe(M1-C1-M2-C2-_) :- M1 >= C1, M2 >= C2.

carry(2,0).
carry(1,1).
carry(0,2).
carry(1,0).
carry(0,1).

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 8/12

In [13]:

Observe that there may be multiple possible target transition for a source transition.
Each such possible transition is an outedge in the game graph.

Defining the game
We need to define the game as a series of steps, where each step is safe and we do not visit the same steps
again.

We use Visited list to track visited states and maintain a log of steps.

In [14]:

Solving the game
Solution to the same is a series steps that go from initial to final state.

In [15]:

In [16]:

Solving the game

Added 2 clauses(s).

Added 2 clauses(s).

Added 1 clauses(s).

L = [-(-(-(2, 2), 1), 1)-r, -(-(-(3, 2), 0), 1)-l, -(-(-(3, 0), 0),
3)-r, -(-(-(3, 1), 0), 2)-l, -(-(-(1, 1), 2), 2)-r, -(-(-(2, 2), 1),
1)-l, -(-(-(0, 2), 3), 1)-r, -(-(-(0, 3), 3), 0)-l, -(-(-(0, 1), 3),
2)-r, -(-(-(1, 1), 2), 2)-l, -(-(-(0, 0), 3), 3)-r] .

step(M1-C1-M2-C2-l,M3-C3-M4-C4-r) :-
 carry(X,Y),
 M1 >= X, M3 is M1 - X, M4 is M2+X,
 C1 >= Y, C3 is C1 - Y, C4 is C2+Y.

step(M1-C1-M2-C2-r,M3-C3-M4-C4-l) :-
 carry(X,Y),
 M2 >= X, M4 is M2 - X, M3 is M1+X,
 C2 >= Y, C4 is C2 - Y, C3 is C1+Y.

travel(A,A,_,[]).
travel(A,C,Visited,[B|Steps]) :-
 step(A,B), safe(B), \+member(B,Visited), travel(B,C,[A,B|Visited],Steps).

solve3(L) :- start(A), finish(B), travel(A,B,[],L).

?- solve3(L) {1}.

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 9/12

The solution is the same is what is illustrated here:

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 10/12

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 11/12

Exercise: Towers of Hanoi

29/10/2019 lec26

127.0.0.1:8888/notebooks/lec26/lec26.ipynb 12/12

Fin.

