
28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 1/10

Cuts and Negation
CS3100 Fall 2019

Review

Previously
Generate and Test: A design pattern for logic programming

This lecture
Cuts

A mechanism for pruning Prolog search trees
Red and Green cuts

Evaluator
Consider a simple evaluator for arithmetic expressions.

In [1]:

Evaluator
What is the result of evaluating 1 + (4 * 5) ?

In [2]:

In [3]:

Trace eval(plus(1,mult(4,5)),X) by hand.

Added 3 clauses(s).

X = 21 .

ERROR: Caused by: ' eval(plus(1,mult(4,5)),X) '. Returned: 'error(typ
e_error(evaluable, /(mult, 2)), context(:(system, /(is, 2)), _1840))'.

eval(plus(A,B),C) :- eval(A,VA), eval(B,VB), C is VA + VB.
eval(mult(A,B),C) :- eval(A,VA), eval(B,VB), C is VA * VB.
eval(A,A).

?- eval(plus(1,mult(4,5)),X) {1}.

?- eval(plus(1,mult(4,5)),X) {2}.

28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 2/10

Fixing the evaluator - with wrapper
Wrap the values in a function value .

In [4]:

In [5]:

Fixing the evaluator - with cut
The cut (!) is an extra-logical (outside pure logic) operator that prunes the search trees.
When the evaluation cross a cut, it prunes

All the subsequent possible branches in the parent.
All the subsequent possible branches in the preceeding sub-goals.

In [6]:

In [7]:

Cut behaviour
In [8]:

Added 3 clauses(s).

X = 21 .

Added 3 clauses(s).

X = 21 .

Added 5 clauses(s).

eval2(plus(A,B),C) :- eval2(A,VA), eval2(B,VB), C is VA + VB.
eval2(mult(A,B),C) :- eval2(A,VA), eval2(B,VB), C is VA * VB.
eval2(value(A),A).

?- eval2(plus(value(1),mult(value(4),value(5))),X).

eval3(plus(A,B),C) :- !, eval3(A,VA), eval3(B,VB), C is VA + VB.
eval3(mult(A,B),C) :- !, eval3(A,VA), eval3(B,VB), C is VA * VB.
eval3(A,A).

?- eval3(plus(1,mult(4,5)),X).

p(a).
p(b).
r(c).
q(X) :- !, p(X).
q(X) :- r(X).

28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 3/10

In [9]:

Quiz
What does split/3 do?

split([],[],[]).
split([H|T],[H|L],R) :- H < 5, split(T,L,R).
split([H|T],L,[H|R]) :- H >= 5, split(T,L,R).

It splits the given list into elements less than 5 and greater than or equal to 5.

Split
In [10]:

In [11]:

Observe that the last two cases are mutually exclusive.
But Prolog still searches through the third rule, if second rule was successfully matched.

Split with cut
In [12]:

The second ! is unnecessary as there are no further choices.
In fact, the predicate H >= 5 is unnecessary since the only way to end up here is if the first rule
failed.
But better to leave it there for readability.

X = a ;
X = b .

Added 3 clauses(s).

R = [5, 6, 7, 8, 9], L = [1, 2, 3, 4] .

Added 2 clauses(s).

?- q(X).

split([],[],[]).
split([H|T],[H|L],R) :- H < 5, split(T,L,R).
split([H|T],L,[H|R]) :- H >= 5, split(T,L,R).

?- split([1,2,3,4,5,6,7,8,9],L,R).

split([],[],[]).
split([H|T],[H|L],R) :- H < 5, !, split(T,L,R).
split([H|T],L,[H|R]) :- H >= 5, !, split(T,L,R).

28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 4/10

y
Recommendation:

Use cut to optimise execution, but retain predicates which help readability.

Quiz
What is the logical meaning of these clauses?

p :- a,b.
p :- c.

1. .
2. .
3. .
4. .

Quiz
What is the logical meaning of these clauses?

p :- a,b.
p :- c.

1. . ✓
2. .
3. .
4. .

Quiz
What is the logical meaning of these clauses?

p :- a,!,b.
p :- c.

1. .
2. .
3. .
4. .

Quiz
What is the logical meaning of these clauses?

p :- a,!,b.
p :- c.

1. .
2. .

28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 5/10

2. .
3. . ✓
4. .

Red and Green cuts
p :- a,!,b.
p :- c.

Since the cut above changes the logical meaning of the program, it is known as Red cut.

split([],[],[]).
split([H|T],[H|L],R) :- H < 5, !, split(T,L,R).
split([H|T],L,[H|R]) :- H >= 5, split(T,L,R).

The cut in split does not change the logical meaning of the program. Hence, it is called Green cut.

Remove Stutter
In [13]:

In [14]:

Remove Stutter
Can be equivalently written as:

In [15]:

In [16]:

Added 4 clauses(s).

X = [1, 2, 3, 4, 1] .

Added 4 clauses(s).

X = [1, 2, 3, 4, 1] .

remove_stutter([],[]).
remove_stutter([H],[H]).
remove_stutter([H,H|T],L) :- !, remove_stutter([H|T],L).
remove_stutter([X,Y|T],[X|L]) :- remove_stutter([Y|T],L).

?- remove_stutter([1,1,2,2,2,3,4,1,1],X).

remove_stutter2([],[]).
remove_stutter2([H],[H]).
remove_stutter2([H,H|T],L) :- remove_stutter2([H|T],L).
remove_stutter2([X,Y|T],[X|L]) :- not(X=Y), remove_stutter2([Y|T],L).

?- remove_stutter2([1,1,2,2,2,3,4,1,1],X).

28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 6/10

Negation
What is the relationship between cut and negation?
With the use of negation, the clause is not longer a definite clause. What's going on here?

Quiz
What does this do?

a :- !, 1=2.
?- a.

1. successfully unfies 1 with 2
2. throws an exception
3. loops indefinitely
4. fails

Quiz
What does this do?

a :- !, 1=2.
?- a.

1. successfully unfies 1 with 2
2. throws an exception
3. loops indefinitely
4. fails ✓

You can give a better name for a/0 : fail/0 .
Prolog has an built-in predicate fail/0 , which always fails.

Quiz
What does this do?

a(A,A) :- !,fail.
a(_,_).

1. unifies the two arguments
2. succeeds if the arguments unify
3. succeeds if the arguments don't unify
4. always fails

Quiz
What does this do?

28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 7/10

a(A,A) :- !,fail.
a(_,_).

1. unifies the two arguments
2. succeeds if the arguments unify
3. succeeds if the arguments don't unify ✓
4. always fails

You can give a better name for a/2 : is_different/2 .

Failure on unification
In [17]:

In [18]:

Behaviour of fail and is_different
Clauses such as 'fail' and 'isDifferent' can cause us to backtrack in unusual ways.
This will undo any variable unifications along the way.

Negation by failure
We can now implement not using negation-by-failure.

not(A) :- A,!,fail.
not(_).

In [19]:

not/2 is a built-in in Prolog.
You may also write not(A) as \+A .

Quiz

Added 2 clauses(s).

true.

true.

is_different(A,A) :- !,fail.
is_different(_,_).

?- is_different(m,n).

?- not(1=2).

28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 8/10

What sort of a cut is this?

not(A) :- A,!,fail.
not(_).

1. red.
2. amber.
3. green.

Quiz
What sort of a cut is this?

not(A) :- A,!,fail.
not(_).

1. red. ✓
2. amber.
3. green.

If the cut were not there, then the first rule would always fail, but the second rule will always succeed.

Closed world assumption
Everything that is true in the "world" is stated (or can be derived from) the clauses in the program.

not is based on the closed world assumption.

not(A) holds if it cannot be shown from the given clauses that A holds.

Example: Buying a phone
In [20]:

In [21]:

Simple mistake with negation

Added 4 clauses(s).

X = oneplus7tpro .

goodPhone(iphone11pro).
goodPhone(oneplus7tpro).
expensive(iphone11pro).

bargain(X) :- goodPhone(X), not(expensive(X)).

?- bargain(X).

28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 9/10

In [22]:

In [23]:

What went wrong?
Trace through:

goodPhone2(iphone11pro).
goodPhone2(oneplus7tpro).
expensive2(iphone11pro).

not(A) :- A,!,fail.
not(_).

bargain2(X) :- not(expensive2(X)), goodPhone2(X).

?- bargain2(X).

When using negation remember the quantifier
Our negation is not a logical one.

expensive2(X) is .

Our not(expensive2(X) is

Hence, the rule

bargain2(X) :- not(expensive2(X)), goodPhone2(X).

will only succeed if there are no expensive restaurants, which is not our intention.

Recommendation: Use not(T) only when T is ground.
This was the case in the first example.

Fin.

Added 4 clauses(s).

false.

goodPhone2(iphone11pro).
goodPhone2(oneplus7tpro).
expensive2(iphone11pro).

bargain2(X) :- not(expensive2(X)), goodPhone2(X).

?- bargain2(X).

28/10/2019 lec24

127.0.0.1:8888/notebooks/lec24/lec24.ipynb 10/10

