
23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 1/10

Mutable(?) data structures 
CS3100 Fall 2019 

Review

Previously
Control in Prolog

This lecture
Simulating mutable data structure in Prolog.

Variables in terms
So far all of our uses of variables have been in queries or rules, but not in terms representing objects.
Here is a open list which has a prefix of [a,b] .

?- L = [1,2 | X] 
L = [1, 2|X].

We can (pretend to) extend the list L  by unifying X  with something else.

?- L = [1,2 | X], X = [3 | Y] 
L = [1, 2, 3|Y], 
X = [3|Y].

Such lists are said to be open lists.

Jupyter + Prolog fail!
Jupyter + Prolog is a solution in development (read as does not work as intended).

In [1]:

The result should have been X = _G861, L = [ 1, 2 | X] . .

We will use the SWI-Prolog interpreter directly for this lecture.

Queues
We will use open lists to represent queues.

X = _1676, L = [ 1, 2 ] .

?- L = [1,2 | X].



23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 2/10

p p q
A queue is represented by q(L,E) , where

L  is be an open list
E  is some suffix of L.

The contents of the queue are the elements in L  that are not in E .

Enter and Leave
We will use predicates enter  and leave  to capture elements entering and leaving the queue.

enter(a,Q,R) : when an element a  enters the queue Q , we get the queue R .
leave(a,Q,R) : when an element a  leaves the queue Q , we get the queue R .

Implementing the queues
setup(q(X,X)). 
leave(A, q(X,Z), q(Y,Z)) :- X = [A | Y]. 
enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z]. 
wrapup(q([],[])).

Let's try

?- setup(Q), enter(0,Q,R). 
Q = q([0|_9530], [0|_9530]), 
R = q([0|_9530], _9530).

Quite a strange behaviour: Remove 0  from the suffix of Q !
But as a result, the queue R  has one element 0  which is not in the suffix.
Therefore, the queue R  has one element 0 .

Implementing Queues
leave(A, q(X,Z), q(Y,Z)) :- X = [A | Y].

while leave removes an element from the prefix.

enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z].

enter removes element from the suffix!

Working with the queues



23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 3/10

?- setup(Q), enter(a,Q,R), enter(b,R,S),  
  leave(X,S,T), leave(Y,T,U), wrapup(U). 

Q = q([a, b], [a, b]), 
R = q([a, b], [b]), 
S = q([a, b], []), 
X = a, 
T = q([b], []), 
Y = b, 
U = q([], []).

Quiz 1
Given

?- setup(Q), enter(a,Q,R), enter(b,R,S),  
  leave(X,S,T), leave(Y,T,U), wrapup(U). 

Q = q([a, b], [a, b]), 
R = q([a, b], [b]), 
S = q([a, b], []), 
X = a, 
T = q([b], []), 
Y = b, 
U = q([], []).

What are the lengths of Q, R, S, T, U?

Quiz 1
Given

?- setup(Q), enter(a,Q,R), enter(b,R,S),  
  leave(X,S,T), leave(Y,T,U), wrapup(U). 

Q = q([a, b], [a, b]), 
R = q([a, b], [b]), 
S = q([a, b], []), 
X = a, 
T = q([b], []), 
Y = b, 
U = q([], []).

What are the lengths of Q, R, S, T, U? 0, 1, 2, 1, 0.

Deficit queues
Interestingly, the implementation also works where arbitrary elements are first popped and then unfied with
elements pushed later.



23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 4/10

?- setup(Q), leave(X,Q,R), leave(Y,R,S),  
  enter(a,S,T), enter(b,T,U), wrapup(U). 

Q = q([a, b], [a, b]), 
X = a, 
R = q([b], [a, b]), 
Y = b, 
S = q([], [a, b]), 
T = q([], [b]), 
U = q([], []).

Quiz 2
Given

?- setup(Q), leave(X,Q,R), leave(Y,R,S), enter(a,S,T), enter(b,T,U), wrapup
(U). 
Q = q([a, b], [a, b]), 
X = a, 
R = q([b], [a, b]), 
Y = b, 
S = q([], [a, b]), 
T = q([], [b]), 
U = q([], []).

What is the length of Q, R, S, T, and U?

Quiz 2
Given

?- setup(Q), leave(X,Q,R), leave(Y,R,S), enter(a,S,T), enter(b,T,U), wrapup
(U). 
Q = q([a, b], [a, b]), 
X = a, 
R = q([b], [a, b]), 
Y = b, 
S = q([], [a, b]), 
T = q([], [b]), 
U = q([], []).

What is the length of Q, R, S, T, and U? 0, -1, -2, -1, 0

Quiz 3
What is the result of this query?

?- setup(Q), leave(a,Q,R), wrapup(R).

1. false.
2. true with some assignments for variables.



23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 5/10

Quiz 3
What is the result of this query?

?- setup(Q), leave(a,Q,R), wrapup(R).

1. false. ✓
2. true with some assignments for variables.

Quiz 4
Given

setup(s(X,X)). 
leave(A, s(X,Z), s(Y,Z)) :- X = [A | Y]. 
wrapup(q([],[])).

what is the enter  rule for LIFO stack?

1. enter(A, s(X,Y), s(X,Z)) :- Y = [A | Z]
2. enter(A, s(X,Z), s(Y,Z)) :- Y = [A | X]
3. enter(A, s(X,Y), s(Y,Z)) :- X = [A | Y]
4. enter(A, s(X,Z), s(Z,Y)) :- Y = [A | X]

Quiz 4
Given

setup(s(X,X)). 
leave(A, s(X,Z), s(Y,Z)) :- X = [A | Y]. 
wrapup(q([],[])).

what is the enter  rule for LIFO stack?

1. enter(A, s(X,Y), s(X,Z)) :- Y = [A | Z]
2. enter(A, s(X,Z), s(Y,Z)) :- Y = [A | X]  ✓
3. enter(A, s(X,Y), s(Y,Z)) :- X = [A | Y]
4. enter(A, s(X,Z), s(Z,Y)) :- Y = [A | X]

Simplifying the queue implementation
enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z]. 
leave(A, q(X,Z), q(Y,Z)) :- X = [A | Y].

can be simplified to

enter(A, q(X,[A | Z]), q(X,Z)). 
leave(A, q([A | Y],Z), q(Y,Z)).



23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 6/10

by pushing the unification into the head of the rule to make it a fact.

Motivating Difference Lists
Recall the definition of append  on regular lists

In [2]:

It is easy to see that this append  is O(N)  operation, where N  is the length of the first list.

Motivating Difference Lists
Given two lists [1,2,3]  and [4,5,6] , we can rewrite them as

append(L1,L2,X) 
where 
L1 = [1,2,3 | []] 
L2 = [4,5,6 | []]

Instead of having []  as the tail, what if we had a variable.

Motivating Difference Lists
append(L1,L2,X) 
where 
L1 = [1,2,3 | A] 
L2 = [4,5,6 | B]

Then, append is really unifying A  and L2  to derive the result list X = [1,2,3,4,5,6 | B] .
Now, append  becomes an O(1)  operation.
Such a list representation is known as a difference list.

Reimplementing Append
append(L1,S1,L2,S2,L3,S3) :- ...

where Li  is the reference to the list, and Si  is the reference to the some suffix of the list.

Similar to queues, the content of each list is the list of all elements in Li  not in Si
Hence the name difference list.

Reimplementing Append
append(L1,S1,L2,S2,L3,S3) :- S1 = L2, L1=L3, S2=S3.

Added 2 clauses(s).

append([],Q,Q).
append([H | P], Q, [H | R]) :- append(P,Q,R).



23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 7/10

pp ( , , , , , ) , ,

Pushing the unification into the head of the rule, we get

append(L1,L2,L2,S2,L1,S2).

Renaming the variables, we get.

append(A,B,B,C,A,C).

Convenient notation for difference lists
We can introduce an infix function symbol -  to represent difference lists.

A-B  represents a difference list with list A  with some suffix B .
Whenever you see A-B , you should imagine [...|B]-B .

Rewriting the append rule

append(A-B,B-C,A-C).

Quiz
How should you represent an empty difference list?

1. []
2. []-[]
3. A-A
4. [A]

Quiz
How should you represent an empty difference list?

1. []
2. []-[]
3. A-A ✓
4. [A]

Empty difference list representation
append(A-B,B-C,A-C)

Consider appending onto an empty difference list.

With the empty list represented using A-A , we get

append(A-A,[1,2,3|C]-C,A-C)

The unifications we get are A = [1,2,3|C] . Hence the result is just [1,2,3|C]-C , which is what we
want.



23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 8/10

Empty difference list representation
append(A-B,B-C,A-C)

OTOH, with the empty list represented using []-[] , we get

append([]-[],[1,2,3|C]-C,A-C)

which fails to unify since []  does not unify with [1,2,3|C] .

It appears that the correct way to encode an empty difference list is A-A .
But this can cause problems sometimes.

Unification issues with empty difference list
Consider

A-A = [1,2,3|B]-B

The second term on LHS, A  unfies with B  on RHS. So we get,

A-A = [1,2,3|A]-A

Now, unfifying A  with [1,2,3|A] , makes A  an infinite term [1,2,3 | [1,2,3 | [1,2,3 [...]]]] .

This is the lack of occurs check before unfication in prolog.

length of difference list.
Length of an ordinary list

len([],0). 
len([H|T],N) :- len(T,M), N is M+1.

We might try to write down the length of a difference list using the same structure:

len(A-A,0). 
len([_|T]-T1,N) :- len(T-T1,M), N is M+1.

Quiz
What is the length of len([1,2,3|A]-A,B) ?

1. A = _, B = 3
2. Error: Arguments not sufficiently instantiated
3. A = infinite term, B = 0
4. false.

Quiz
What is the length of len([1,2,3|A]-A,B) ?



23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 9/10

|

1. A = _, B = 3
2. Error: Arguments not sufficiently instantiated
3. A = infinite term, B = 0 ✓
4. false.

len([1,2,3 | A]-A, B)  unifies with len(A-A,B) .

Quiz
What is the length of len([1,2,3|A]-A,B) ?

1. A = _, B = 3 ✓
2. Error: Arguments not sufficiently instantiated
3. A = infinite term, B = 0 ✓
4. false.

Surprisingly, A = _, B = 3  is also one of the results.

Exercise: Trace by hand.

Solution 1: Grounding the empty difference list
You can ground the empty difference list by forcing an empty difference list to unify with a pair of empty lists.

len2([]-[],0). 
len2([_|T]-T1,N) :- len2(T-T1,M), N is M+1.

This gives the right answer for len2([1,2,3|A]-A,B)
But unifies the tail of the list A  with []  and destroys extensibility.
Seemingly pure length function also mutates the list :-(

Solution 2: occurs check
Infinite list problem occurs due to [1,2,3|A]  unifying with A .

Let us enable occurs check to prevent these terms from unifying.

len3(A-A1,0) :- unify_with_occurs_check(A,A1). 
len3([_|T]-T1,N) :- len3(T-T1,M), N is M+1.

You can also enable occurs_check by default by the query

?- set_prolog_flag(occurs_check,true).

Difference list rotation
Define a procedure rotate(X,Y) where both X and Y are  
represented by difference lists, and Y is formed by  
rotating X to the left by one element.



23/10/2019 lec22

127.0.0.1:8888/notebooks/lec22/lec22.ipynb 10/10

List rotation
rotate([H|T],L) :- append(T,[H],L).

Rewrite with difference lists
rotate([H|T],R) :- append(T,[H],R).

becomes

rotate([H|T]-T1,R-S) :- append(T-T1,[H|A]-A,R-S).

Rename the variables
rotate([H|T]-T1,R-S) :- append(T-T1,[H|A]-A,R-S).

append  will unify T1 = [H|A] , T = R  and A = S .
Apply this renaming.

rotate([H|T]-[H|A],T-A) :- append(T-[H|A],[H|A]-A,T-A).

Get rid of append
rotate([H|T]-[H|A],T-A) :- append(T-[H|A],[H|A]-A,T-A).

Observe that the append  is redundant
When this append succeeds, no new unifications are obtained.
Remove it to get

rotate([H|T]-[H|A],T-A).

Testing Rotate
?- rotate([1,2,3|A]-A,R). 
A = [1|_12344], 
R = [2, 3, 1|_12344]-_12344.

Fin. 


