Mutable(?) data structures

CS3100 Fall 2019

Review

Previously

- Control in Prolog

This lecture

- Simulating mutable data structure in Prolog.

Variables in terms

- So far all of our uses of variables have been in queries or rules, but not in terms representing objects.
- Here is a open list which has a prefix of $[a, b]$.
?- $\mathrm{L}=[1,2 \mid \mathrm{X}]$
$\mathrm{L}=[1,2 \mid \mathrm{X}]$.
- We can (pretend to) extend the list L by unifying X with something else.
?- L = [1, 2 | X], X = [3 | Y]
$\mathrm{L}=[1,2,3 \mid \mathrm{Y}]$,
$\mathrm{X}=[3 \mid \mathrm{Y}]$.
Such lists are said to be open lists.

Jupyter + Prolog fail!

Jupyter + Prolog is a solution in development (read as does not work as intended).

In [1]:
? $-\mathrm{L}=[1,2 \mid \mathrm{X}]$.
$\mathrm{X}=\ldots 1676, \mathrm{~L}=[1,2]$.

The result should have been $\mathrm{X}=\mathrm{H}_{\mathrm{G}} \mathrm{G} 61, \mathrm{~L}=[1,2 \mid \mathrm{X}] .$.
We will use the SWI-Prolog interpreter directly for this lecture.

Queues

We will use open lists to represent queues.

- A queue is represented by $q(L, E)$, where
- L is be an open list
- E is some suffix of L.
- The contents of the queue are the elements in L that are not in E.

Enter and Leave

We will use predicates enter and leave to capture elements entering and leaving the queue.

- enter (a, Q, R) : when an element a enters the queue Q, we get the queue R.
- leave (a, Q, R) : when an element a leaves the queue Q, we get the queue R.

Implementing the queues

```
setup(q(X,X)).
leave(A, q(X,Z), q(Y,Z)) :- X = [A | Y].
enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z].
wrapup(q([],[])).
```

Let's try
?- $\operatorname{setup}(Q)$, enter $(0, Q, R)$.
$Q=q\left(\left[0 \mid _9530\right],\left[0 \mid _9530\right]\right)$,
$R=q\left(\left[0 \mid _9530\right], \quad\right.$ 9530).

- Quite a strange behaviour: Remove 0 from the suffix of Q !
- But as a result, the queue R has one element 0 which is not in the suffix.
- Therefore, the queue R has one element 0 .

Implementing Queues

```
leave(A, q(X,Z), q(Y,Z)) :- X = [A | Y].
```

while leave removes an element from the prefix.

```
enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z].
```

enter removes element from the suffix!

Working with the queues

```
?- setup(Q), enter(a,Q,R), enter(b,R,S),
    leave(X,S,T), leave(Y,T,U), wrapup(U).
    Q = q([a, b], [a, b]),
    R = q([a, b], [b]),
    S = q([a, b], []),
    X = a,
    T = q([b], []),
    Y = b,
    U = q([], []).
```


Quiz 1

Given

```
?- setup(Q), enter(a,Q,R), enter(b,R,S),
    leave(X,S,T), leave(Y,T,U), wrapup(U).
Q = q([a, b], [a, b]),
R = q([a, b], [b]),
S = q([a, b], []),
X = a,
T = q([b], []),
Y = b,
U = q([], []).
```

What are the lengths of $\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}$?

Quiz 1

Given

```
?- setup(Q), enter(a,Q,R), enter(b,R,S),
    leave(X,S,T), leave(Y,T,U), wrapup(U).
Q = q([a, b], [a, b]),
R = q([a, b], [b]),
S = q([a, b], []),
X = a,
T = q([b], []),
Y = b,
U = q([], []).
```

What are the lengths of $Q, R, S, T, U ? \mathbf{0 , 1 , 2 , 1 , 0}$.

Deficit queues

Interestingly, the implementation also works where arbitrary elements are first popped and then unfied with elements pushed later.

```
?- setup(Q), leave(X,Q,R), leave(Y,R,S),
    enter(a,S,T), enter(b,T,U), wrapup(U).
    Q = q([a, b], [a, b]),
    X = a,
    R = q([b], [a, b]),
    Y = b,
    S = q([], [a, b]),
    T = q([], [b]),
    U = q([], []).
```


Quiz 2

Given

```
?- setup(Q), leave(X,Q,R), leave(Y,R,S), enter(a,S,T), enter(b,T,U), wrapup
```

(U).
$Q=q([a, b],[a, b])$,
$X=a$,
$R=q([b],[a, b])$,
$\mathrm{Y}=\mathrm{b}$,
S = q([], [a, b]),
T = q([], [b]),
U = q([], []).

What is the length of Q, R, S, T, and U ?

Quiz 2

Given

```
?- setup(Q), leave(X,Q,R), leave(Y,R,S), enter(a,S,T), enter(b,T,U), wrapup
```

(U).
$Q=q([a, b],[a, b])$,
$X=a$,
$R=q([b],[a, b])$,
$\mathrm{Y}=\mathrm{b}$,
S = $\mathrm{q}([],[\mathrm{a}, \mathrm{b}])$,
$T=q([],[b])$,
$\mathrm{U}=\mathrm{q}([],[])$.

What is the length of Q, R, S, T, and U ? $\mathbf{0 , - 1 , - 2 , - 1 , 0}$

Quiz 3

What is the result of this query?

```
?- setup(Q), leave(a,Q,R), wrapup(R).
```

1. false.
2. true with some assignments for variables.

Quiz 3

What is the result of this query?

```
?- setup(Q), leave(a,Q,R), wrapup(R).
```

1. false.
2. true with some assignments for variables.

Quiz 4

Given

```
setup(s(X,X)).
leave(A, s(X,Z), s(Y,Z)) :- X = [A | Y].
wrapup(q([],[])).
```

what is the enter rule for LIFO stack?

1. enter(A, $s(X, Y), s(X, Z)):-Y=[A \mid Z]$
2. enter $(A, s(X, Z), s(Y, Z)):-Y=[A \mid X]$
3. enter(A, $s(X, Y), s(Y, Z)):-X=[A \mid Y]$
4. enter(A, $s(X, Z), s(Z, Y)):-Y=[A \mid X]$

Quiz 4

Given

```
setup(s(X,X)).
leave(A, s(X,Z), s(Y,Z)) :- X = [A | Y].
wrapup(q([],[])).
```

what is the enter rule for LIFO stack?

1. enter(A, $s(X, Y), s(X, Z)):-Y=[A \mid Z]$
2. enter(A, $s(X, Z), s(Y, Z)):-Y=[A \mid X]$
3. enter(A, $s(X, Y), s(Y, Z)):-X=[A \mid Y]$
4. enter(A, $s(X, Z), s(Z, Y)):-Y=[A \mid X]$

Simplifying the queue implementation

```
enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z].
leave(A, q(X,Z), q(Y,Z)) :- X = [A | Y].
```

can be simplified to

```
enter(A, q(X,[A | Z]), q(X,Z)).
leave(A, q([A | Y],Z), q(Y,Z)).
```

by pushing the unification into the head of the rule to make it a fact.

Motivating Difference Lists

Recall the definition of append on regular lists

In [2]:

```
append([],Q,Q).
append([H | P], Q, [H | R]) :- append(P,Q,R).
```

Added 2 clauses(s).

It is easy to see that this append is $\mathrm{O}(\mathrm{N})$ operation, where N is the length of the first list.

Motivating Difference Lists

Given two lists $[1,2,3]$ and $[4,5,6]$, we can rewrite them as

```
append(L1,L2,X)
where
L1 = [1,2,3 | []]
L2 = [4,5,6 | []]
```

Instead of having [] as the tail, what if we had a variable.

Motivating Difference Lists

```
append(L1,L2,X)
where
L1 = [1,2,3 | A]
L2 = [4,5,6 | B]
```

- Then, append is really unifying A and $L 2$ to derive the result list $X=[1,2,3,4,5,6 \mid B]$.
- Now, append becomes an O(1) operation.
- Such a list representation is known as a difference list.

Reimplementing Append

```
append(L1,S1,L2,S2,L3,S3) :- ...
```

where Li is the reference to the list, and Si is the reference to the some suffix of the list.

- Similar to queues, the content of each list is the list of all elements in Li not in Si
- Hence the name difference list.

Reimplementing Append

Pushing the unification into the head of the rule, we get
append(L1,L2,L2,S2,L1,S2).
Renaming the variables, we get.
$\operatorname{append}(A, B, B, C, A, C)$.

Convenient notation for difference lists

- We can introduce an infix function symbol - to represent difference lists.
- A-B represents a difference list with list A with some suffix B.
- Whenever you see $A-B$, you should imagine $[\ldots \mid B]-B$.

Rewriting the append rule append (A-B,B-C, $A-C)$.

Quiz

How should you represent an empty difference list?

1. []
2. []-]
3. A-A
4. [A]

Quiz

How should you represent an empty difference list?

1. []
2. []-]
3. A-A $\sqrt{ }$
4. [A]

Empty difference list representation

```
    append(A-B,B-C,A-C)
```

Consider appending onto an empty difference list.
With the empty list represented using A-A, we get
append (A-A, $[1,2,3 \mid C]-C, A-C)$
The unifications we get are $A=[1,2,3 \mid C]$. Hence the result is just $[1,2,3 \mid C]-C$, which is what we want.

Empty difference list representation

```
append(A-B,B-C,A-C)
```

OTOH, with the empty list represented using []-[] , we get

```
append([]-[],[1,2,3|C]-C,A-C)
```

which fails to unify since [] does not unify with $[1,2,3 \mid C]$.

- It appears that the correct way to encode an empty difference list is A-A.
- But this can cause problems sometimes.

Unification issues with empty difference list

Consider

$$
\mathrm{A}-\mathrm{A}=[1,2,3 \mid \mathrm{B}]-\mathrm{B}
$$

The second term on LHS, A unfies with B on RHS. So we get,

$$
\mathrm{A}-\mathrm{A}=[1,2,3 \mid \mathrm{A}]-\mathrm{A}
$$

Now, unfifying A with $[1,2,3 \mid A]$, makes A an infinite term $[1,2,3 \mid[1,2,3 \mid[1,2,3 \quad[\ldots]]]$. This is the lack of occurs check before unfication in prolog.

length of difference list.

Length of an ordinary list

```
len([],0).
len([H|T],N) :- len(T,M), N is M+1.
```

We might try to write down the length of a difference list using the same structure:

```
len(A-A,0).
len([_|T]-T1,N) :- len(T-T1,M), N is M+1.
```


Quiz

What is the length of $\operatorname{len}([1,2,3 \mid A]-A, B) ?$

1. $A=_, B=3$
2. Error: Arguments not sufficiently instantiated
3. $A=$ infinite term, $B=0$
4. false.

Quiz

What is the length of $\operatorname{len}([1,2,3 \mid A]-A, B)$?

1. $A=_, B=3$
2. Error: Arguments not sufficiently instantiated
3. $A=$ infinite term, $B=0 \checkmark$
4. false.
$\operatorname{len}([1,2,3 \mid A]-A, B)$ unifies with $\operatorname{len}(A-A, B)$.

Quiz

What is the length of $\operatorname{len}([1,2,3 \mid A]-A, B)$?

1. $A=_, B=3 \checkmark$
2. Error: Arguments not sufficiently instantiated
3. $A=$ infinite term, $B=0 \checkmark$
4. false.

Surprisingly, $\mathrm{A}=$ _, $\mathrm{B}=3$ is also one of the results.
Exercise: Trace by hand.

Solution 1: Grounding the empty difference list

You can ground the empty difference list by forcing an empty difference list to unify with a pair of empty lists.
len2([]-[],0).
len2([_|T]-T1,N) :- len2(T-T1,M), N is $M+1$.

- This gives the right answer for $\operatorname{len} 2([1,2,3 \mid A]-A, B)$
- But unifies the tail of the list A with [] and destroys extensibility.
- Seemingly pure length function also mutates the list :-(

Solution 2: occurs check

- Infinite list problem occurs due to $[1,2,3 \mid \mathrm{A}]$ unifying with A.
- Let us enable occurs check to prevent these terms from unifying.
len3(A-A1,0) :- unify_with_occurs_check(A,A1).
len3([_|T]-T1,N) :- len3(T-T1,M), N is M+1.
You can also enable occurs_check by default by the query
?- set_prolog_flag(occurs_check,true).

Difference list rotation

Define a procedure rotate(X, Y) where both X and Y are represented by difference lists, and Y is formed by rotating X to the left by one element.

List rotation

```
rotate([H|T],L) :- append(T,[H],L).
```


Rewrite with difference lists

```
rotate([H|T],R) :- append(T,[H],R).
```


becomes

rotate([H|T]-T1,R-S) :- append(T-T1, [H|A]-A,R-S).

Rename the variables

```
rotate([H|T]-T1,R-S) :- append(T-T1,[H|A]-A,R-S).
```

- append will unify $T 1=[H \mid A], T=R$ and $A=S$.
- Apply this renaming.
rotate([H|T]-[H|A],T-A) :- append(T-[H|A],[H|A]-A,T-A).

Get rid of append

```
rotate([H|T]-[H|A],T-A) :- append(T-[H|A],[H|A]-A,T-A).
```

- Observe that the append is redundant
- When this append succeeds, no new unifications are obtained.
- Remove it to get

```
rotate([H|T]-[H|A],T-A).
```


Testing Rotate

?- rotate([1,2,3|A]-A,R).
$\mathrm{A}=\left[1 \mid _12344\right]$,
$R=\left[2,3,1 \mid _12344\right]-_12344$.

Fin.

