
31/07/2019 lec2

127.0.0.1:8888/notebooks/lectures/lec2/lec2.ipynb 1/6

Functional
Programming

CS3100

Recap

Last
Time:

Why study programming languages?

Today:

Why functional programming matters?

See also the famous paper titled "Why Functional Programming Matters?"
(https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf) by John Huges.

In
this
part
of
the
course,
we
will
learn

Functional
Programming

What
is
a
functional
language?

A functional language:

31/07/2019 lec2

127.0.0.1:8888/notebooks/lectures/lec2/lec2.ipynb 2/6

defines computations as mathematical
functions

avoids mutable state

State: information maintained by a computation

Mutable: can be changed (antonym: immutable)

Mutability

The
fantasy
of
mutability:

It's easy to reason about: the machine does this, then this...

The
reality
of
mutability:

Machines are good at complicated manipulation of state
Humans are not good at understanding it!

Mutability breaks referential
transparency: ability to replace expression with its value
without affecting result of computation

Imperative
programming

Commands specify how
to
compute by destructively changing state:

x = x+1;
a[i] = 42;
p.next = p.next.next;

Functions/methods have side
effects:

int x = 0;
int incr_x () {
 x++;
 return x;

}

Functional
Programming

Expressions specify what
to
compute

Variables never change value

31/07/2019 lec2

127.0.0.1:8888/notebooks/lectures/lec2/lec2.ipynb 3/6

Functional never have side effects

The power of immutability:

No need to think about state
Powerful ways to build correct programs

Why
study
functional
programming?

1. Functional programming languages predict the future.

1.
Functional
programming
languages
predict
the

future

Garbage collection
Java [1995], LISP [1958]

Generics
Java 5 [2004], ML [1990]

Higher-order functions
C#3.0 [2007], Java 8 [2014], LISP [1958]

Type inference
C++11 [2011], Java 7 [2011] and 8, ML [1990]

What's
next?

Why
study
functional
programming?

1. Functional programming languages predict the future.
2. Functional programming languages are sometimes used in the industry.

2.
Functional
Programmming
in
Industry

Java 8 -- Oracle
F#, C# 3.0, LINQ -- Microsoft
Scala -- Twitter, Foursquare, LinkedIn
Haskell -- Facebook, Barclays, AT&T
Erlang -- Facebook, Amazon, WhatsApp
OCaml -- Facebook, Bloomberg, Citrix, JaneStreet

31/07/2019 lec2

127.0.0.1:8888/notebooks/lectures/lec2/lec2.ipynb 4/6

Why
study
functional
programming?

1. Functional programming languages predict the future.
2. Functional programming languages are sometimes used in the industry.
3. Functional programming languages are elegant.

Does
aesthetics
matter?

You'll often hear that functional programming code is beautiful, concise, stylish, refined, etc.
But does it matter?

YES!

Who reads code?
Machines
Humans

Elegant code is easier to read and maintain
Elegant code might (not) be easier to write

OCaml

A pretty good language for writing beautiful programs.
O=Objective, Caml=not important.
ML is a family of languages; originally the "meta-language" for a tool

31/07/2019 lec2

127.0.0.1:8888/notebooks/lectures/lec2/lec2.ipynb 5/6

OCaml
is
awesome

Immutable programming
Algebraic datatypes and pattern matching
First-class functions
Static type-checking
Automatic type inference
Parametric polymorphism
Garbage collection
Modules

But
no
language
is
perfect...

Immutable programming
Variable’s values cannot destructively be changed; makes reasoning about program
easier!

Algebraic datatypes and pattern matching
Makes definition and manipulation of complex data structures easy to express

First-class functions
Functions can be passed around like ordinary values

Static type-checking
Reduce number of run-time errors

Automatic type inference
No burden to write down types of every single variable

Parametric polymorphism
Enables construction of abstractions that work across many data types

Garbage collection
Automated memory management eliminates many run-time errors

Modules
Advanced system for structuring large systems

Languages
are
tools

There's no universally perfect tool
There's no universally perfect language

OCaml is good for this course because:
good mix of functional & imperative features
relatively easy to reason about meaning of programs

31/07/2019 lec2

127.0.0.1:8888/notebooks/lectures/lec2/lec2.ipynb 6/6

But OCaml isn't perfect
there will be features you miss from language X
there will be annoyances based on your expectations – keep
an
open
mind,
try
to

have
fun

Five
aspects
of
learning
a
PL

1. Syntax: How do you write language constructs?
2. Semantics: What do programs mean? (Type checking, evaluation rules)
3. Idioms: What are typical patterns for using language features to express your

computation?
4. Libraries: What facilities does the language (or a third-party project) provide as

“standard”? (E.g., file access, data structures)
5. Tools: What do language implementations provide to make your job easier? (E.g., top-

level, debugger, GUI editor, ...)

Breaking a new PL down into these pieces makes it easier to learn.

Our
Focus

We focus on semantics and idioms for OCaml

Semantics is like a meta-tool: it will help you learn
Idioms will make you a better programmer in those languages

Libraries and tools are a secondary focus: throughout your career you’ll learn new ones on the
job every year

Syntax is a "fact"; almost always boring
People obsess over subjective preferences {yawn}
Class rule: We don’t complain about syntax

Fin.

