
05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 1/12

(Side) Effects

CS3100 Fall 2019

Why Side Effects
We have only used purely functional feature of OCaml
Our study of lambda calculus used only purely functional features

The above statements are lies.
We have used print_endline , printf and other features to display our results
to screen.

It is sometimes useful to write programs that have side effects

Side effects
Side effects include

Mutating (i.e., destructively updating) the values of program state.
Reading from standard input, printing to standard output.
Reading and writing to files, sockets, pipes etc.
...
Composing, sending and receiving emails, editing documents, writing this slide, etc.

Side effects in OCaml
OCaml programs can include side effects
Features

Mutations: Reference cells, Arrays, Mutable record fields
I/O of all sorts

In this lecture, Mutations

Reference cells

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 2/12

Aka "refs" or "ref cell"
Pointer to a typed location in memory
The binding of a variable to a ref cell is

but the contents of the ref cell may .
immutable

change

x r
o1

o2variable ref cell

 200 1 1 A

Reference cells

In []:

In []:

Reference Cells: Types

In []:

In []:

In []:

let r = ref 0

r := !r + 1;
!r

ref

(!)

(:=)

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 3/12

Implementing a counter

In []:

In []:

In []:

Side effects make reasoning hard
Recall that referential transparency allows replacing with if .
Side effects break referential transparency.

𝑒 𝑣 𝑒 𝑣→𝛽

Referential transparency
Consider the function foo :

In []:

In []:

baz can now be optimised to

In []:

Referential transparency

let make_counter init =
 let c = ref init in
 fun () ->
 (c := !c + 1; !c)

let next = make_counter 0

next()

let foo x = x + 1

let baz = foo 10

let baz = 11

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 4/12

Consider the function bar :

In []:

In []:

Can we now optimise qux to:

In []:

NO. Referential transparency breaks under side effects.

Aliases
References may create aliases.

What is the result of this program?

In []:

z and x are said to be aliases
They refer to the same object in the program heap.

Equality
The = that we have been using is known as structural equality

Checks whether the values' structurally equal.
[1;2;3] = [1;2;3] evaluates to true .

Because of references, one may also want to ask whether two expressions are aliases
This equality is known as physical equality.

let bar x = x + next()

let qux = bar 10

let qux = 12

let x = ref 10 in
let y = ref 10 in
let z = x in
z := !x + 1;
!x + !y

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 5/12

OCaml uses == to check for physical equality.

Equality

In []:

Equality
let l1 = [1;2;3];;
let l2 = l1;;
let l3 = [1;2;3];;
let r1 = ref l1;;
let r2 = r1;;
let r3 = ref l3;;

which of the following are true?

(1) l1 = l2 (2) l1 = l3 (3) r1 == r2 (4) l1 == l2

(5) r1 == r3 (6) l1 == l3 (7) r1 = r2 (8) r1 = r3

Equality

let l1 = [1;2;3];;
let l2 = l1;;
let l3 = [1;2;3];;
let r1 = ref l1;;
let r2 = r1;;
let r3 = ref l3;;

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 6/12

[1;2;3]

[1;2;3]

l1 l2

l3

r1 r2

r3

which of the following are true?

(1) l1 = l2 (2) l1 = l3 (3) r1 == r2 (4) l1 == l2

(5) r1 == r3 (6) l1 == l3 (7) r1 = r2 (8) r1 = r3

References are structurally equal iff their contents are structurally equal.

In []:

Value Restriction
Consider the following program:

In []:

r has type 'a list . But otherwise, nothing surprising here.

Value Restriction
Consider a modified program:

l1 = l2

let r = [] in
let r1 : int list = r in
let r2 : string list = r in
(r1,r2)

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 7/12

In []:

Value Restriction
Let's look at the type of ref []

In []:

The '_weak1' says that r` is only weakly polymorphic.
r can be used with only one type.

This is known as value restriction.
But why does value restriction exist?

Why does value restriction exist?
If value restriction does not exist, the following program would be well-typed.

let r = ref [] in
let r1 : int list ref = r in
let r2 : string list ref = r in
r1 := [1];
print_endline (List.hd !r2)

We are storing an int list in r1 and reading it out as a string list through r2 .
In OCaml, value restriction is implemented as a syntactic check of RHS + some typing
checks.

Details are beyond the scope of this course.

Partial Application and Value restriction
Since value restriction is implemented as a syntactic check, it can sometimes be restrictive.

For example, here is a function that swaps the elemenents of a pair in a list of pairs.

let r = ref [] in
let r1 : int list ref = r in
let r2 : string list ref = r in
(r1,r2)

let r = ref []

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 8/12

In []:

The type inferred is a weakly polymorphic type.

In []:

Partial Application and Value restriction
In many cases, the unnecessary value restriction can be fixed by eta expansion.

In []:

In []:

Mutable Record Fields
Ref cells are essentially syntactic sugar:

type 'a ref = { mutable contents: 'a }
let ref x = { contents = x }
let (!) r = r.contents
let (:=) r newval = r.contents <- newval

That type is declared in Pervasives
The functions are compiled down to something equivalent

Doubly-linked list

let swap_list = List.map (fun (a,b) -> (b,a))

(swap_list [(1,"hello")],
 swap_list [(1,1)])

let swap_list l = List.map (fun (a,b) -> (b,a)) l

(swap_list [(1,"hello")],
 swap_list [(1,1)])

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 9/12

In []:

Double-linked list

In []:

Doubly-linked list

In []:

Doubly-linked list

(* The type of elements *)
type 'a element = {
 value : 'a;
 mutable next : 'a element option;
 mutable prev : 'a element option
}

(* The type of list *)
type 'a dllist = 'a element option ref

let create () : 'a dllist = ref None
let is_empty (t : 'a dllist) = !t = None

let value elt = elt.value

let first (t : 'a dllist) = !t
let next elt = elt.next
let prev elt = elt.prev

let insert_first (t:'a dllist) value =
 let new_elt = { prev = None; next = !t; value } in
 begin match !t with
 | Some old_first -> old_first.prev <- Some new_elt
 | None -> ()
 end;
 t := Some new_elt;
 new_elt

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 10/12

In []:

Doubly-linked list

In []:

Doubly-linked list

In []:

Doubly-linked list

let insert_after elt value =
 let new_elt = { value; prev = Some elt; next = elt.next } in
 begin match elt.next with
 | Some old_next -> old_next.prev <- Some new_elt
 | None -> ()
 end;
 elt.next <- Some new_elt;
 new_elt

let remove (t:'a dllist) elt =
 let { prev; next; _ } = elt in
 begin match prev with
 | Some prev -> prev.next <- next
 | None -> t := next
 end;
 begin match next with
 | Some next -> next.prev <- prev;
 | None -> ()
 end;
 elt.prev <- None;
 elt.next <- None

let iter (t : 'a dllist) f =
 let rec loop = function
 | None -> ()
 | Some el -> f (value el); loop (next el)
 in
 loop !t

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 11/12

In []:

Doubly-linked list

In []:

Arrays
Collection type with efficient random access.

In []:

In []:

Arrays

In []:

In []:

Benefits of immutability
Programmer doesn’t have to think about aliasing; can concentrate on other aspects of
code
Language implementation is free to use aliasing, which is cheap
Often easier to reason about whether code is correct

let l = create ();;
let n0 = insert_first l 0;;
let n1 = insert_after n0 1;;
insert_after n1 2

iter l (Printf.printf "%d\n%!")

let a = [| 1;2;3 |]

a.(2)

a.(1) <- 0;
a

a.(4)

05/09/2019 lec12

127.0.0.1:8888/notebooks/lec12/lec12.ipynb 12/12

Perfect fit for concurrent programming

But

Some data structures (hash tables, arrays, ...) are more efficient if imperative

Fin.

