Simply Typed Lambda Calculus

CS3100 Fall 2019

Review

Previously

- Lambda calculus encodings
 - Booleans, Arithmetic, Pairs, Recursion, Lists

Today

• Simply Typed Lambda Calculus

Need for typing

- · Consider the untyped lambda calculus
 - false = $\lambda x \cdot \lambda y \cdot y$
 - $0 = \lambda x \cdot \lambda y \cdot y$
- Since everything is encoded as a function...
 - We can easily misuse terms...
 - $\circ \ \ \text{false 0} \to \lambda y.y$
 - if 0 then ...
 - ...because everything evaluates to some function
- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words

How to fix these errors?

Typed Lambda Calculus

• Lambda Calculus + Types \rightarrow Simply Typed Lambda Calculus ($\lambda \rightarrow$)

Simple Types

A, B	:=	В	(base type)
		$A \rightarrow B$	(functions)
		$A \times B$	(products)
	1	1	(unit)

- B is base types like int, bool, float, string, etc.
- \times binds stronger than \rightarrow
 - $A \times B \to C$ is $(A \times B) \to C$
- \rightarrow is right associative.
 - $A \to B \to C$ is $A \to (B \to C)$
 - Same as OCaml
- If we include neither base types nor 1, the system is degenerate. Why?
 - Degenerate = No inhabitant.

Raw Terms

М, N	:=	x	(variable)
		MN	(application)
		$\lambda x : A. M$	(abstraction)
		$\langle M, N \rangle$	(pair)
		fst M	(project-1)
		snd M	(project-2)
	l	()	(unit)

Typing Judgements

- *M*: *A* means that the term *M* has type *A*.
- Typing rules are expressed in terms of typing judgements.
 - An expression of form $x_1: A_1, x_2: A_2, \dots, x_n: A_n \vdash M: A$
 - Under the assumption $x_1:A_1, x_2:A_2, ..., x_n:A_n$, *M* has type *A*.
 - Assumptions are usually types for free variables in *M*.
- Use Γ for assumptions.
 - $\Gamma \vdash M: A$
- Assume no repetitions in assumptions.
 - alpha-convert to remove duplicate names.

Quiz

Given Γ , $x: A, y: B \vdash M: C$, which of the following is true?

- 1. *M*: *C* holds
- 2. $x \in \Gamma$
- **3**. *y* ∉ Γ
- 4. *A* and *B* may be the same type
- 5. *x* and *y* may be the same variable

Quiz

Given Γ , $x: A, y: B \vdash M: C$ Which of the following is true?

- 1. M: C holds (M may not be a closed term)
- 2. $x \in \Gamma \times (\Gamma$ has no duplicates)
- 3. $y \notin \Gamma \bigtriangledown$ (Γ has no duplicates)
- 4. *A* and *B* may be the same type \checkmark (*A* and *B* are type variables)
- 5. *x* and *y* may be the same variable \times (Γ has no duplicates)

Typing rules for
$$\lambda \rightarrow$$

$$\overline{\Gamma, x: A \vdash x: A} \quad (var) \qquad \overline{\Gamma \vdash (): 1} \quad (unit)$$

$$\frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M: B} \quad (\rightarrow elim) \quad \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A. M: A \rightarrow B} \quad (\rightarrow intro)$$

$$\frac{\Gamma \vdash M: A \times B}{\Gamma \vdash fst M: A} \quad (\times elim1) \qquad \frac{\Gamma \vdash M: A \times B}{\Gamma \vdash snd M: B} \quad (\times elim2)$$

$$\frac{\Gamma \vdash M: A \quad \Gamma \vdash N: B}{\Gamma \vdash \langle M, N \rangle: A \times B} \quad (\times intro)$$

Typing derivation

$$\frac{x:A \to A, y:A \vdash x:A \to A}{x:A \to A, y:A \vdash x:A \to A} (var) \quad \frac{x:A \to A, y:A \vdash x:A \to A}{x:A \to A, y:A \vdash (xy):A}$$
$$\frac{x:A \to A, y:A \vdash (xy):A}{x:A \to A \vdash (\lambda y:A, x (xy)):A \to A}$$
$$\vdash (\lambda x:A \to A, \lambda y:A, x (xy)):(A \to A) \to A \to \lambda$$

Typing derivation

- For each lambda term, there is exactly one type rule that applies.
 - Unique rule to lookup during typing derivation.

Typability

- Not all $\lambda \rightarrow$ terms can be assigned a type. For example,
- fst $(\lambda x. M)$
- $\langle M, N \rangle P$
- Surprisingly, we cannot assign a type for $\lambda x. x x$ in $\lambda \rightarrow$ (or OCaml)
 - *x* is applied to itself. So its argument type should the type of *x*!

On fst and snd

In OCaml, we can define fst and snd as:

In [2]:

```
let fst (a,b) = a
let snd (a,b) = b
Out[2]:
val fst : 'a * 'b -> 'a = <fun>
Out[2]:
val snd : 'a * 'b -> 'b = <fun>
```

- Observe that the types are polymorphic.
- But no polymorphism in $\lambda \rightarrow$
 - fst and snd are **keywords** in λ^{\rightarrow}

- For a given type $A \times B$, we can define
 - $(\lambda p: A \times B. \text{ fst } p): A$
 - $(\lambda p: A \times B. \text{ snd } p): B$

Reductions in λ^{\rightarrow}

Type Soundness

- Well-typed programs do not get stuck.
 - stuck = not a value & no reduction rule applies.
 - fst $(\lambda x. x)$ is stuck.
 - ()() is stuck.
- In practice, well-typed programs do not have runtime errors.

Theorem (Type Soundness). If $\vdash M: A$ and $M \to M'$, then either M' is a value or there exists an M'' such that $M' \to M''$.

Proved using two lemmas progress and preservation.

Preservation

If a term *M* is well-typed, and *M* can take a step to M' then *M* is well-typed.

Lemma (Preservation). If $\vdash M: A$ and $M \rightarrow M'$, then $\vdash M': A$.

Proof is by induction on the reduction relation $M \rightarrow M'$.

Preservation : Case β_{\rightarrow}

Lemma (Preservation). If $\vdash M: A$ and $M \rightarrow M'$, then $\vdash M': A$.

Recall, $(\beta \rightarrow)$ rule is $(\lambda x : A. M_1) N \rightarrow M_1[N/x]$.

Assume $\vdash M: A$. Here $M = (\lambda x: B, M_1) N$ and $M' = M_1[N/x]$.

We know *M* is well-typed. And from the typing derivation know that $x: B \vdash M_1: A$ and $\vdash N: B$.

Lemma (substitution). If $x: B \vdash M: A$ and $\vdash N: B$, then $\vdash M[N/x]: A$.

By substitution lemma, $\vdash M_1[N/x]: A$. Therefore, preservation holds.

Progress

Progress says that if a term *M* is well-typed, then either *M* is a value, or there is an M' such that *M* can take a step to M'.

Lemma (Progress). If $\vdash M: A$ then either *M* is a value or there exists an M' such that $M \to M'$.

Proof is by induction on the derivation of $\vdash M: A$.

- Case *var* does not apply
- Cases *unit*, \times *intro* and \rightarrow *intro* are trivial; they are values.
- Reduction is possible in other cases as *M* is well-typed.

Type Safety = Progress + Preservation

Expressive power of λ^{\rightarrow}

- Clearly, not all untyped lambda terms are well-typed.
 - Any term that gets stuck is ill-typed.
- Are there terms that are ill-typed but do not get stuck?
- Unfortunately, the answer is yes!
 - Consider $\lambda x. x. \ln \lambda \rightarrow$, we must assign type for x
 - Pick a concrete type for x

- $\circ \lambda x: 1.x.$
- $(\lambda x: 1.x) \langle (), () \rangle$ is ill-typed, but does not get stuck.

Expressive power of λ^{\rightarrow}

- As mentioned earlier, we can no longer write recursive function.
 - $(\lambda x. x x) (\lambda x. x x)$
- Every well-typed $\lambda \rightarrow$ term terminates!
 - λ^{\rightarrow} is strongly normalising.

Connections to propositional logic

Consider the following types

- (1) $(A \times B) \rightarrow A$
- (2) $A \rightarrow B \rightarrow (A \times B)$
- $(3) \quad (A \to B) \to (B \to C) \to (A \to C)$
- $(4) \quad A \to A \to A$
- (5) $((A \rightarrow A) \rightarrow B) \rightarrow B$
- (6) $A \rightarrow (A \times B)$
- (7) $(A \rightarrow C) \rightarrow C$

Can you find closed terms of these types?

Connections to propositional logic

- (1) $(A \times B) \rightarrow A$
- (2) $A \rightarrow B \rightarrow (A \times B)$
- $(4) \quad A \to A \to A$
- $(5) \quad ((A \to A) \to B) \to B$
- (6) $A \rightarrow (A \times B)$
- (7) $(A \rightarrow C) \rightarrow C$

 $\lambda x: A \times B$. fst x $\lambda x: A. \lambda y: B. \langle x, y \rangle$ (3) $(A \to B) \to (B \to C) \to (A \to C)$ $\lambda x: A \to B. \lambda y: B \to C. \lambda z: A. y (x z)$ $\lambda x: A. \lambda y: A. x$ $\lambda x: (A \to A) \to B. x (\lambda y: A. y)$ can't find a closed term can't find a closed term

A different question

- Given a type, whether there exists a closed term for it?
- Replace \rightarrow with \implies and \times with \wedge .

(1) $(A \land B) \Longrightarrow A$ (2) $A \Longrightarrow B \Longrightarrow (A \land B)$ (3) $(A \Longrightarrow B) \Longrightarrow (B \Longrightarrow C) \Longrightarrow (A \Longrightarrow C)$ (4) $A \Longrightarrow A \Longrightarrow A$ (5) $((A \Longrightarrow A) \Longrightarrow B) \Longrightarrow B$ (6) $A \Longrightarrow (A \land B)$ (7) $(A \Longrightarrow C) \Longrightarrow C$

What can we say about the validity of these logical formulae?

A different question

(1) $(A \land B) \Longrightarrow A$ (2) $A \Longrightarrow B \Longrightarrow (A \land B)$ (3) $(A \Longrightarrow B) \Longrightarrow (B \Longrightarrow C) \Longrightarrow (A \Longrightarrow C)$ (4) $A \Longrightarrow A \Longrightarrow A$ (5) $((A \Longrightarrow A) \Longrightarrow B) \Longrightarrow B$ (6) $A \Longrightarrow (A \land B)$ (7) $(A \Longrightarrow C) \Longrightarrow C$

(1) - (5) are valid, (6) and (7) are not!

Proving a propositional logic formula

• How to prove $(A \land B) \implies A$?

- Assume $A \wedge B$ holds. By the first conjunct, A holds. Hence, the proof.
- Consider the program $\lambda x : A \times B$. fst x.
 - Observe the close correspondence of this program to the proof.
- What is the type of this program? $(A \times B) \rightarrow A$.
 - Observe the close correspondence of this type to the proposition.
- Curry-Howard correspondence between $\lambda \rightarrow$ and propositional logic.

Curry-Howard Correspondence

- Proposition:Proof :: Type:Program
- Intuitionistic/constructive logic and not classical logic
 - Law of excluded middle (*A* ∨ ¬*A*) does not hold for an arbitrary *A*.
 Can't prove by contradiction
 - In order to prove, construct the proof object!

lec11

Propositional Intuitionistic Logic

Formulas: $A, B ::= \alpha \mid A \rightarrow B \mid A \land B \mid \top$

where α is atomic formulae.

A derivation is

$$x_1: A_1, x_2: A_2, ..., x_n: A_n \vdash A$$

where $A_1, A_2, ...$ are assumptions, $x_1, x_2, ...$ are names for those assumptions and A is the formula derived from those assumptions.

Derivations through natural deduction

 $\overline{\Gamma, x: A \vdash x: A} \quad (axiom) \qquad \overline{\Gamma \vdash T} \quad (\top intro)$ $\frac{\Gamma \vdash A \implies B \quad \Gamma \vdash A}{\Gamma \vdash B} \quad (\implies elim) \quad \frac{\Gamma, x: A \vdash B}{\Gamma \vdash A \implies B} \quad (\implies intro)$ $\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \quad (\land elim1) \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \quad (\land elim2)$ $\frac{\Gamma \vdash A \land F}{\Gamma \vdash A \land B} \quad (\land intro)$

Curry Howard Isomorphism

- Allows one to switch between type-theoretic and proof-theoretic views of the world at will.
 - used by theorem provers and proof assistants such as coq, HOL/Isabelle, etc.
- Reductions of λ^{\rightarrow} terms corresponds to proof simplification.

Curry Howard Isomorphism

$\lambda \rightarrow$	Propositional Intuitionistic Logic	
Types	Propositions	
1	Т	
×	Λ	
\rightarrow	\Rightarrow	
Programs	Proofs	
Reduction	Proof Simplification	

What about \vee ?

Disjunction

Extend the logic with:

Formulas: $A, B ::= \dots | A \lor B | \perp$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\lor intro1) \qquad \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\lor intro2)$$
$$\frac{\Gamma \vdash \bot}{\Gamma \vdash C} (\bot elim) \qquad \frac{\Gamma \vdash A \lor B \quad \Gamma, x: A \vdash C \quad \Gamma, y: B \vdash C}{\Gamma \vdash C} (\lor elim)$$

Sum Types

Extend \$\stlc\$ with:

 $\label{eq:array} $$ A,B & ::= & \ A,B & ::$

The OCaml equivalent of this sum type is:

type ('a,'b) either = Inl of 'a | Inr of 'b

- Similar to fst and snd, there is no polymorphism in \$\stlc\$.
 - Hence, inl and inr are keywords.

Explicit Type Annotation for inl and inr

Raw Terms: M, N, P ::= ... | case M of inl $x: A \Rightarrow N$ | inl $y: B \Rightarrow P$ | inl [B] M | inr [A] M | $\Box_A M$

- Observe that the term for inl and inr require explicit type annotation.
- Without that inl () has many possible types captured by 1 + *A*.
 - Bottom up type checking is not possible as A is left undefined.
 - No type inference or polymorphism in λ^{\rightarrow} .
- · Add explicit annotation and preserve bottom-up type checking property.

Sum Types : Contradiction

Extend \$\stlc\$ with:

- The type \$0\$ is an **uninhabited** type
 - There are no values of this type.
- The OCaml equivalent is an empty variant type:

type zero =

Sum Types : Static Semantics

Extend λ^{\rightarrow} with:

$$\frac{\Gamma \vdash M:A}{\Gamma \vdash \operatorname{inl} [B] M:A+B} (+ \operatorname{introl}) \frac{\Gamma \vdash M:B}{\Gamma \vdash \operatorname{inr} [A] M:A+B} (+ \operatorname{introl})$$
$$\frac{\Gamma \vdash M:A+B}{\Gamma \vdash \operatorname{case} M \text{ of inl} x:A \vdash N:C} \frac{\Gamma, y:B \vdash P:C}{\Gamma \vdash \operatorname{case} M \text{ of inl} x:A \Rightarrow N \mid \operatorname{inl} y:B \Rightarrow P:C} (+ \operatorname{elim})$$

$$\frac{\Gamma \vdash M:0}{\Gamma \vdash \Box_A M:A} \ (\Box)$$

Casting and type soundness

- Recall, Type soundness => well-typed programs do not get stuck
 - Preservation: $\vdash M: A \text{ and } M \to M'$, then $\vdash M': A$
- But \square_A changes the type of the expression
 - Is type soundness lost?
- Consider $\lambda x: 0.(\Box_{1 \rightarrow 1} x)()$
 - This term is well-typed.
 - *x* is not a function.
 - If we are able to call this function, the program would get *stuck*.
- There is no way to call this function since the type 0 is uninhabited!
 - Type Soundness is preserved.

Sum Types : Dynamic Semantics

Extend \rightarrow with:

 $\frac{M \to M^{'}}{\operatorname{case} M \text{ of inl } x_1 : A \Rightarrow N_1 \mid \operatorname{inl} x_2 : B \Rightarrow N_2 \to \operatorname{case} M^{'} \text{ of inl } x_1 : A \Rightarrow N_1 \mid \operatorname{inl} x_2 : B \Rightarrow N_2}$

 $\frac{M = \operatorname{inl} [B] M'}{\operatorname{case} M \operatorname{of} \operatorname{inl} x_1 \colon A \Rightarrow N_1 | \operatorname{inl} x_2 \colon B \Rightarrow N_2 \to N_1[M'/x_1]}$ $\frac{M = \operatorname{inr} [A] M'}{\operatorname{case} M \operatorname{of} \operatorname{inl} x_1 \colon A \Rightarrow N_1 | \operatorname{inl} x_2 \colon B \Rightarrow N_2 \to N_2[M'/x_2]}$

Type Erasure

- Although we carry around type annotations during reduction, we do not examine them.
 - No runtime type checking to see if function is applied to appropriate arguments, etc.
- Most compilers drop the types in the compiled form of the program (erasure).

erase(x) = xerase(MN) = erase(M) erase(N) $erase(\lambda x : A. M) = \lambda x. erase(M)$ erase(inr [A] M) = erase(inr erase(M))

etc.

Type erasure

Theorem (Type erasure).

- 1. If $M \to M'$ under the λ^{\rightarrow} reduction relation, then $erase(M) \to erase(M')$ under untyped reduction relation.
- 2. If erase(M) $\rightarrow N'$ under the untyped reduction relation, then there exists a λ^{\rightarrow} term M' such that $M \to M'$ under λ^{\rightarrow} reduction relation and $\operatorname{erase}(M') = N'$.

Static vs Dynamic Typing

- OCaml, Haskell, Standard ML are statically typed languages.
 - Only well-typed programs are allowed to run.

- Type soundness holds; well-typed programs do no get stuck.
- Types can be erased at compilation time.
- What about Python, JavaScript, Clojure, Perl, Lisp, R, etc?
 - Dynamically typed languages.
 - No type checking at compile time; anything goes.
 - x = lambda a : a + 10; x("Hello") is a runtime error.
 - Allows more programs to run, but types need to be checked at runtime.
 - Types cannot be erased!

Fin