
31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 1/13

Simply Typed Lambda Calculus

CS3100 Fall 2019

Review

Previously
Lambda calculus encodings

Booleans, Arithmetic, Pairs, Recursion, Lists

Today
Simply Typed Lambda Calculus

Need for typing
Consider the untyped lambda calculus

false = λx.λy.y
0 = λx.λy.y

Since everything is encoded as a function...
We can easily misuse terms…

false 0 → λy.y
if 0 then ...

…because everything evaluates to some function
The same thing happens in assembly language

Everything is a machine word (a bunch of bits)
All operations take machine words to machine words

How to fix these errors?
Typed Lambda Calculus

Lambda Calculus + Types → Simply Typed Lambda Calculus (λ→)

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 2/13

Simple Types
A, B B (base type)

A → B (functions)
A × B (products)
1 (unit)

B is base types like int, bool, float, string, etc.
× binds stronger than →

A × B → C is (A × B) → C
→ is right associative.

A → B → C is A → (B → C)
Same as OCaml

If we include neither base types nor 1, the system is degenerate. Why?
Degenerate = No inhabitant.

Raw Terms

M, N x (variable)
M N (application)
λx :A.M (abstraction)
M, N (pair)

fst M (project-1)
snd M (project-2)
() (unit)

Typing Judgements
M :A means that the term M has type A.
Typing rules are expressed in terms of typing judgements.

An expression of form x1 :A1, x2 :A2, …, xn :An M :A
Under the assumption x1 :A1, x2 :A2, …, xn :An, M has type A.
Assumptions are usually types for free variables in M.

Use Γ for assumptions.
Γ M :A

Assume no repetitions in assumptions.
alpha-convert to remove duplicate names.

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 3/13

Quiz
Given Γ, x :A, y :B M :C, which of the following is true?

1. M :C holds
2. x Γ
3. y Γ
4. A and B may be the same type
5. x and y may be the same variable

Quiz
Given Γ, x :A, y :B M :C Which of the following is true?

1. M :C holds (M may not be a closed term)
2. x Γ (Γ has no duplicates)
3. y Γ (Γ has no duplicates)
4. A and B may be the same type (A and B are type variables)
5. x and y may be the same variable (Γ has no duplicates)

Typing rules for λ→

Γ, x :A x :A (var) Γ () : 1 (unit)

Γ M :A → B Γ N :A
Γ M N :B (→ elim)

Γ, x :A M :B
Γ λx :A.M :A → B (→ intro)

Γ M :A × B
Γ fst M :A (× elim1)

Γ M :A × B
Γ snd M :B (× elim2)

Γ M :A Γ N :B
Γ M, N :A × B (× intro)

Typing derivation

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 4/13

x :A → A, y :A x :A → A (var)
x :A → A, y :A x :A → A

 (var)
x :A → A, y :A

x :A → A, y :A (x y) :A
x :A → A, y :A x (x y) :A
x :A → A (λy :A. x (x y)) :A → A

(λx :A → A. λy :A. x (x y)) : (A → A) → A →

Typing derivation
For each lambda term, there is exactly one type rule that applies.

Unique rule to lookup during typing derivation.

Typability
Not all λ→ terms can be assigned a type. For example,
fst (λx.M)
M, N P

Surprisingly, we cannot assign a type for λx. x x in λ→ (or OCaml)
x is applied to itself. So its argument type should the type of x!

On fst and snd
In OCaml, we can define fst and snd as:

In [2]:

Observe that the types are polymorphic.
But no polymorphism in λ→

fst and snd are keywords in λ→

Out[2]:

val fst : 'a * 'b -> 'a = <fun>

Out[2]:

val snd : 'a * 'b -> 'b = <fun>

let fst (a,b) = a
let snd (a,b) = b

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 5/13

For a given type A × B, we can define
(λp :A × B. fst p) :A
(λp :A × B. snd p) :B

Reductions in λ→

(β→) (λx :A.M) N → M[N /x]

(η→) λx :A.M x → M if x FV(M)

(β × , 1) fst M, N → M

(β × , 2) snd M, N → N

(η ×) fst M, snd M → M

(cong1)
M → M ′

M N → M ′ N
(cong2)

N → N ′

M N → M N ′

(ξ)
M → M ′

λx :A.M → λx :A.M ′

Type Soundness
Well-typed programs do not get stuck.

stuck = not a value & no reduction rule applies.
fst (λx. x) is stuck.
() () is stuck.

In practice, well-typed programs do not have runtime errors.

Theorem (Type Soundness). If M :A and M → M ′ , then either M ′ is a value or there exists an
M ″ such that M ′ → M ″ .

Proved using two lemmas progress and preservation.

Preservation
If a term M is well-typed, and M can take a step to M ′ then M is well-typed.

Lemma (Preservation). If M :A and M → M ′ , then M ′ :A.

Proof is by induction on the reduction relation M → M ′ .

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 6/13

Preservation : Case β→
Lemma (Preservation). If M :A and M → M ′ , then M ′ :A.

Recall, (β→) rule is (λx :A.M1) N → M1[N /x].

Assume M :A. Here M = (λx :B.M1) N and M ′ = M1[N /x].

We know M is well-typed. And from the typing derivation know that x :B M1 :A and N :B.

Lemma (substitution). If x :B M :A and N :B, then M[N /x] :A.

By substitution lemma, M1[N /x] :A. Therefore, preservation holds.

Progress
Progress says that if a term M is well-typed, then either M is a value, or there is an M ′ such that
M can take a step to M ′ .

Lemma (Progress). If M :A then either M is a value or there exists an M ′ such that M → M ′ .

Proof is by induction on the derivation of M :A.

Case var does not apply
Cases unit, × intro and → intro are trivial; they are values.
Reduction is possible in other cases as M is well-typed.

Type Safety = Progress + Preservation

Expressive power of λ→

Clearly, not all untyped lambda terms are well-typed.
Any term that gets stuck is ill-typed.

Are there terms that are ill-typed but do not get stuck?

Unfortunately, the answer is yes!
Consider λx. x. In λ→ , we must assign type for x
Pick a concrete type for x

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 7/13

λx : 1.x.
(λx : 1.x) (), () is ill-typed, but does not get stuck.

Expressive power of λ→

As mentioned earlier, we can no longer write recursive function.
(λx. x x) (λx. x x)

Every well-typed λ→ term terminates!
λ→ is strongly normalising.

Connections to propositional logic
Consider the following types

(1) (A × B) → A
(2) A → B → (A × B)
(3) (A → B) → (B → C) → (A → C)
(4) A → A → A
(5) ((A → A) → B) → B
(6) A → (A × B)
(7) (A → C) → C

Can you find closed terms of these types?

Connections to propositional logic
(1) (A × B) → A λx :A × B. fst x
(2) A → B → (A × B) λx :A. λy :B. x, y
(3) (A → B) → (B → C) → (A → C) λx :A → B. λy :B → C. λz :A. y (x z)
(4) A → A → A λx :A. λy :A. x
(5) ((A → A) → B) → B λx : (A → A) → B. x (λy :A. y)
(6) A → (A × B) can't find a closed term
(7) (A → C) → C can't find a closed term

A different question
Given a type, whether there exists a closed term for it?
Replace → with and × with .

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 8/13

(1) (A B) A
(2) A B (A B)
(3) (A B) (B C) (A C)
(4) A A A
(5) ((A A) B) B
(6) A (A B)
(7) (A C) C

What can we say about the validity of these logical formulae?

A different question
(1) (A B) A
(2) A B (A B)
(3) (A B) (B C) (A C)
(4) A A A
(5) ((A A) B) B
(6) A (A B)
(7) (A C) C

(1) − (5) are valid, (6) and (7) are not!

Proving a propositional logic formula
How to prove (A B) A?

Assume A B holds. By the first conjunct, A holds. Hence, the proof.
Consider the program λx :A × B. fst x.

Observe the close correspondence of this program to the proof.
What is the type of this program? (A × B) → A.

Observe the close correspondence of this type to the proposition.
Curry-Howard correspondence between λ→ and propositional logic.

Curry-Howard Correspondence
Proposition:Proof :: Type:Program
Intuitionistic/constructive logic and not classical logic

Law of excluded middle (A ¬A) does not hold for an arbitrary A.
Can't prove by contradiction

In order to prove, construct the proof object!

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 9/13

Propositional Intuitionistic Logic
Formulas:A, B ::= α A → B A B

where α is atomic formulae.

A derivation is

x1 :A1, x2 :A2, …, xn :An A

where A1, A2, … are assumptions, x1, x2, … are names for those assumptions and A is the
formula derived from those assumptions.

Derivations through natural deduction
Γ, x :A x :A (axiom) Γ (intro)

Γ A B Γ A
Γ B (elim)

Γ, x :A B
Γ A B (intro)

Γ A B
Γ A (elim1)

Γ A B
Γ B (elim2)

Γ A Γ B
Γ A B (intro)

Curry Howard Isomorphism
Allows one to switch between type-theoretic and proof-theoretic views of the world at will.

used by theorem provers and proof assistants such as coq, HOL/Isabelle, etc.
Reductions of λ→ terms corresponds to proof simplification.

Curry Howard Isomorphism
λ→ Propositional Intuitionistic Logic

Types Propositions
1
×
→

Programs Proofs
Reduction Proof Simplification

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 10/13

What about ?

Disjunction
Extend the logic with:

Formulas: A, B ::= … A B

Γ A
Γ A B (intro1)

Γ B
Γ A B (intro2)

Γ
Γ C (elim)

Γ A B Γ, x :A C Γ, y :B C
Γ C (elim)

Sum Types
Extend \stlc with:

\[\begin{array}{rrcl} \text{Simple Types: } & A,B & ::= & \ldots \mid A + B \mid 0 \\ \text{Raw
Terms: } & M,N,P & ::= & \ldots \mid \case{M}{x:A}{N}{y:B}{P} \\ & & \mid & \inl{B}{M} \mid
\inr{A}{M} \mid \square_{A} ~M \end{array} \]

The OCaml equivalent of this sum type is:

type ('a,'b) either = Inl of 'a | Inr of 'b

Similar to fst and snd , there is no polymorphism in \stlc.
Hence, inl and inr are keywords.

Explicit Type Annotation for inl and inr
Raw Terms: M, N, P ::= … case M of inl x :A N | inl y :B P

inl [B] M inr [A] M ◻A M

Observe that the term for inl and inr require explicit type annotation.
Without that inl () has many possible types captured by 1 + A.

Bottom up type checking is not possible as A is left undefined.
No type inference or polymorphism in λ→ .

Add explicit annotation and preserve bottom-up type checking property.

Sum Types : Contradiction

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 11/13

yp
Extend \stlc with:

\[\begin{array}{rrcl} \text{Simple Types: } & A,B & ::= & \ldots \mid A + B \mid 0 \\ \text{Raw
Terms: } & M,N,P & ::= & \ldots \mid \case{M}{x:A}{N}{y:B}{P} \\ & & \mid & \inl{B}{M} \mid
\inr{A}{M} \mid \square_{A} ~M \end{array} \]

The type 0 is an uninhabited type
There are no values of this type.

The OCaml equivalent is an empty variant type:

type zero = |

Sum Types : Static Semantics
Extend λ→ with:

Γ M :A
Γ inl [B] M :A + B (+ intro1)

Γ M :B
Γ inr [A] M :A + B (+ intro2)

Γ M :A + B Γ, x :A N :C Γ, y :B P :C
Γ case M of inl x :A N | inl y :B P :C (+ elim)

Γ M : 0
Γ ◻AM :A (◻)

Casting and type soundness
Recall, Type soundness => well-typed programs do not get stuck

Preservation: M :A and M → M ′ , then M ′ :A
But ◻A changes the type of the expression

Is type soundness lost?
Consider λx : 0.(◻1 → 1 x) ()

This term is well-typed.
x is not a function.
If we are able to call this function, the program would get stuck.

There is no way to call this function since the type 0 is uninhabited!
Type Soundness is preserved.

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 12/13

Sum Types : Dynamic Semantics
Extend → with:

M → M ′

case M of inl x1 :A N1 | inl x2 :B N2 → case M ′ of inl x1 :A N1 | inl x2 :B N2

M = inl [B] M ′

case M of inl x1 :A N1 | inl x2 :B N2 → N1[M ′ /x1]

M = inr [A] M ′

case M of inl x1 :A N1 | inl x2 :B N2 → N2[M ′ /x2]

Type Erasure
Although we carry around type annotations during reduction, we do not examine them.

No runtime type checking to see if function is applied to appropriate arguments, etc.
Most compilers drop the types in the compiled form of the program (erasure).

erase(x) = x
erase(M N) = erase(M) erase(N)

erase(λx :A.M) = λx. erase(M)
erase(inr [A] M) = erase(inr erase(M))

etc.

Type erasure
Theorem (Type erasure).

1. If M → M ′ under the λ→ reduction relation, then erase(M) → erase(M ′) under untyped
reduction relation.

2. If erase(M) → N ′ under the untyped reduction relation, then there exists a λ→ term M ′ such
that M → M ′ under λ→ reduction relation and erase(M ′) = N ′ .

Static vs Dynamic Typing
OCaml, Haskell, Standard ML are statically typed languages.

Only well-typed programs are allowed to run.

31/08/2019 lec11

127.0.0.1:8888/notebooks/lec11/lec11.ipynb 13/13

Type soundness holds; well-typed programs do no get stuck.
Types can be erased at compilation time.

What about Python, JavaScript, Clojure, Perl, Lisp, R, etc?
Dynamically typed languages.
No type checking at compile time; anything goes.

x = lambda a : a + 10; x("Hello") is a runtime error.
Allows more programs to run, but types need to be checked at runtime.

Types cannot be erased!

Fin

